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FOREWORD

Under Contract No. N00014-67-01I-0012 with the

Office of Naval Research, the Systems Research Laboratory

(SRL) has been conducting a research program to develop

analytic models of defense processes, principally the com-

bat process. A detailed description of all the research

performed on this program through June 1970 was repopted

in SRL 2147 TR 70-2 (U) "Development of Models for Defense

Systems Planning" dated September 1970. Additional work

related to the combat allocation process was reported in

SRL 2147 TR 71-1 (U) "Development of Optimal Strategies in 4
Heterogeneous Lanchester-Type Processes" dated June 1971.

The work in descriptive modeling of combat processes

and the development of optimal weapon allocation strategies

assumed perfect intelligence gathering capabilities of the

forces. For this reason some of the research effort has

been directed to the study of intelligence and recon-

aissance processes. A literature review of this area

(reported in SRL 2147 TR 70-1 "A Review of Search and

Reconnaissance Theory Literature", dated January 1970) in-

dicated the need to consider more realistically both en-

vironmental effects and search objectives (interaction

with the combat process) in developing descriptive strue-

tures of the search process and analysis of optimal search
I



strategies. Some initial ideas in these directions were

presented in SRL 2147 TR 70-2 (U). Initial research on

incorporating the effects of search objectives (called

the response process) has been performed and is described

in the report SRL 2147 TR 71-2 (U) "Effects of the Re-

sponse Process in Search Models with False Detectionb." J

-... The work described in t4s report considers an im-

portant environmental effect -- the visibility process.

The research explores the development of mathematical

structures which link the detection and visibility pro-

cesses, examines the effect that the visibility process

has on classical search strategies, and provides guide-

lines regarding search situations which require explicit

consideration of the visibility process in the development

of optimal search policies.
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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

The topic of this report arose out of research

performed by the Systems Research Laboratory (SRL) under con-

tract number N00014-F7-A-0181-0012 with the Office of Naval

Research. The overall research program is concerned with the

development of more generalized mathematical structures of

military processes, although as will soon become evident,

the results are applicable to nonmilitary processes as well.

Emphasis has been directed to descriptive modeling of com-

bat processes and has assumed perfect intelligence-gathering

capabilities of the units involved. It was thought that

many of the existing search and reconnaissance theories would

be useful for predicting the amount of intelligence-gathering

capability processed by a tactical unit. However, a thorough

literature review indicated that most search and reconnais-

sance modeling efforts have been devoted to the development

of strategies for the optimal allocation of search effort

and little to the development of realistic descriptive mod-

els of intelligence-gatnering process. The literature re-

view and preliminary modeling efforts (Moore, 1970)

indicated the need to consider more realistically both

environmental effects and search objectives in developing

MEO



descriptive structures of the search process and analysis

of optimal search strategies. This report adresses

one dimension of the environmental effects--the "visibility

process." The main thrust of the work is th jelopment of

descriptive search models which include the visibility pro-

cess, and the analysis of these models to gain physical in-

3ight into the intelligence-gathering process, and to deter-

mine strategies for optimal allocation of search effort.

In this chapter, some fundamental terms are defined and

a taxonomy of possible classifications of search problems

is introduced in order to establish i common vocabulary. A

classification of search proDlems is then introduced to fam-

iliarize the reader with the general structure of search

problems. Next the results of an extensive literature review

are summarized to provide the reader with background in the

area as well as a ready source of those results whicL are

referred to in the body of the thesis. Finally, the specific

area of research is outlined and the broad applicability of

the visibility models discussed.

1.1 Characterization of the Elements of Search Problems

1.1.1 Definitions

This section contains some basic definitions and no-

tations used throughout the paper. Any additional notation

and exceptions to those specified heirein •.ill be specifically

noted in the text.
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Detection - The act of gathering information pertaining to
the object being sought, the sifting out of

-• what is important information and the relaying
of that information in some efficient form to
the decision maker.

Discrete Detection Model - Let (I - qi) be the instantan-

eous probability of detection of the ith scan
of an area. Given n such scans, the probabili-
ty of detection is

n

P(D) = 1- n qi
i=:1

The qi are referred to as "overlook" probabili-

ties.

Continuous Detection Model - The probability of detecting
the target in the interval (t, t + dt), given
no detection up to t, is given by y(t)dt.
Given continuous observance cver an interval

(0,T), the probability of detection is

-( y(t)dt

P(T) = 1 - e

Search Strategy - The decision made on the basis of infor-

mation obtained from the detection process. A
"search strategy" will be that set of rules
which associates a decision with every conceivable

result of the detection process, e.g., the next

region to be searched and how much effort to

expend tht're.
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Target The object of the search: a military target,

a mineral deposit, or any other object about

which information is desired.

Search Space - The region containing the target 'r tar-

gets. It can be diesrete consisting of boxes

or subregions, or it may be continuous. It need L

not be considered in a strictly geometrical sense,
e.g., the search space may consist of the pos- L

sible frequencies of an unknown signal.

Cumulative Detector - A detection device having either of

the following characteristics:

(a) No loss of information - Gi%.en that x units

of effort have been continuously applied,

all the information thus gained is retained,

when at some later time, additional effort

is placed in the same region.

(b) Partial loss of information - Given that x

units of effort have been continuously ap-

plied, only certain portions of the infor-

mation thus gained are retained when at

some later time, additional effort is placed

in the region. The portion retained could

be a function of:

(1) the length of time since the first

trial

(2) for moving tax-gets, the motion struc-

ture.

Non-Cumulative Detector - A detection device having the prop-

erty that all the information gained from a pre-

vious search is lost, when a' some later time

additional effort is placed in the same region.



Visibility - That condition under which the sensor (detec-
tor) signals can reach the target and be re-

ceived.

Search Objectives - The two common search objectives are:

(a) Given a constraint on the available search
effort, maximize the probability of detect-

ing the target.

(b) Given unlimited search effort, minimize

the expected effort required until detec-
tion occurs.

The first is an effectiveness measure, while the
second is a cost measure.

1.1.2 Claseifioation of Detectors and Targets

Models of search and reconnaissance processes treat

detectors and targets with varied combinations of properties

or assumptions regarding their behavior. This eection pre-

sents a classification of analytic assumptions that can be

used to describe the behavior of detectors and targets.

Deteotora

1. Single Detector with a Single Scar.

A) Disc:-ete detection

B) Continuous detection

IAerial photographic reconnaissance provides an example of
this situation.



1) Non-cumulative probability of detection1

(Complete loss of information)

2) Cumulative probability of detection

a) partial loss of information

b) no loss of information

2. Single Detector with Multiple Scan Capability .

A) Discrete detection L

B) Continuous detection

1) Non-cumulative probability of detection1

2) Cumulative probability of detection ji
a) partial loss of information
b) no loss of information .•

3. Multiple Detectors with Single Scan Capability "-

A) Discrete detection

1) Detectors act statistically independently "1

2) Detectors act dependently I)

B) Continuous detection "

1) Independent action
1iy

a) non-cumulative probability of detection
b) cumulative probability of detection :'

(1) partial loss of infcrmation

(2) no loss of information ii

2) Dependent action l

"" c
l..hese conditions can also hoild for a discrete detec÷tr.

"" I

A

~1



a) non-cumulative probability of detection

b) cumulative probability of detection

(1) partial loss of information
(2) no loss of information

4. Multiple Detectors with Multiple Scan Capability

A) Discrete detection

1) Independent action

2) Dependent action

B) Continuous detection

1) Independent action

a) non-cumulative probability of detection1

b) cumulative probability of detection

(1) partial loss of information

(2) no loss of information

2) Dependent action

a) non-cumulative probability of detection

b) cumulative probability of detection

(1) partial loss of information

(2) no loss of information

Targets

1. Non-Conscious Evasion

A) Single target

1) Stationary

a) continuously visible

b) not continuously visible

1 These conditions cari also hold for a discrete detector.
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2) Moving

a) continuously visible

b) not continuously visible

B) Multiple Targets

1) Stationary

a) number

b) location

(1) independent actions

(a) continuously visible

(b) not continuously vibible

(2) dependent accions

(a) continuously visible

(b) not continuously visible

2) Moving

a) number

b) initial distribution; description of

the motion

(1) independent actions

(a) continuously visible

(b) not continuously visible

(2) dependent actions

(a) continuously visible

(b) not continuously visible

2. Conscious Evasion

(Same as 1 above)
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1.1.5 CZaeoifioation of Searah Problems

Many variations of search problems appear in the open

literature. The following decision diagram1 presents, in

flow chart format, the various attributes of search problems

that may be considered. It is introduced at this point in

the paper to familiarize the reader with the general struc-

ture of search problems and to provide a vehicle for the lo-

cation of the proposed research topics within the structure.

Given any of the problems discussed in the literature, one

can characterize it by a path through the decision diagram.

For example, the classic search problem of Koopman (1946)

which involves a single searcher with a continuous detec-

tion device looking for a stationary target, continuously

visible, located on the real line is characterized by the

dotted path.

1.S Literature Review
The author has compiled a reasonably complete review

of the open literature in search -:heory, (Moore, 1970), in

an effort to provide a base for the research performed in

this study and to indicate fruitful areas of research

for other investigators. This section summarizes the results

of the review. The following classification scheme will be

1
The chart given is a modification of one originally given
by H. Beiman, "An Investigation of Sequential Search Algor-
ithms," Oper. Res. Inc., Silver Spring, Maryland, AD 657050,
January, 1967.
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utilized to outline the historical development of what we

@hall term "classical search theory:"

(A) Non-Conscious Evasion

These papers deal with the problem of determining

the optimal allocation of effort to find a tar-

get when the probability distribution of the tar-

get location is known to the searcher

Two sub-headings are considered under this category.

(1) Stationary targets, i.e., the target is as-

sumed stationary although some authors consi-

der targets that suddenly appear and remain
visible.

(2) Moving targets, i.e., the target is moving
without conscious evasion and the searcher

knows, or is willing to assume, the motion

or distribution of motion of the target.

(B) Conscious Evasion

These papers, which usually include game theor-

etic concepts, consider the search problem with

a conscious evader. Included in this category
are the search/evasion problems in which the sear.h-

er and evader can alter their motions differential-
ly by choices of continuously varying parameters.

(C) Search and the Visibility Process

This section includes papers containing important

results, utilized in our work, in the development

of search and detection theory and methodology or

the application of search concepts to the opera-

tions of reconnax.isa(w:e and surveillance.
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1. 8.1' Non,,Ceoeoioua £'tae~on

Koopman (1946) laid the foundation for the entire field

of optimal search and detection. In a series of fundamen-

tal papers he described certain basic detection processe*

and the procedure for the optimum allocation of effort in the

search for a stationary target. We shall define this prob-

lem and its solution in some detail in order to better un-

derstand the later developments in the field, and to make

some compazisons with our results.

Let a stationary target be located in a known region A

with known complete probability density function p(x,y) con-

tinuous over A. It is assumed that the searcher has certain

constraints on the amount of effort, *, that can be directed

towards the search. Let *(x,y) be a search density function

defined on the region A, with the properties that

/ (xy)dxdy = 4

*(x,y) > 0 on A

If one assumes that the searcher is employing a continuous

detector, then the probability of detecting the target with

effort *, P(*), is given by

p( ff P(xY)A(1 - e(XPY))dxdy

A
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*(x,y)where 1 - represents the conditional probability

of detecting a target at (x,y) with effort *(x,y), condi-

tioned on the target being present, and is derived as a con-

sequence of Koopman's Law of Random Search (Koopman, 1946).
The fundamental problem is to determine from the class

of functions satisfying the constraints that searcn density

function whion maximizes the objective function. Koopman
*1

obtained the result:

" f log p(x,y)dxdy + -, (x,y)sýA

A

*(x,y)

0, (x,y)cA -A

where

A I(x,y):p(x,y) > b & log b

- .fflog p(x,y)dxdy + '7' 0

A AA

By considering A to be composed of subregions A1 , A2 , ... , N

one can obtain the solution to the N-region discrete search

space problem. Some generalizations suggested by Koopman

iThe solution gives one the optimal allocation of The effor-.
One is not concerned here with the sequence of allocations.
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include the case of visibility varying from position to po-

sition, i.e., let v(x) denote the probability that a tar-

get in (xx + dx) is visible, weighting the probability of

detection by a function dependent upon where the target is

detected, e.g., the detection of saboteurs, and weighting

the search density function by a cost function dependent upon

the region being searched.

Charnes and Cooper (1958) developed an algorithm for the

solution of a discrete search space/continuous detector ver-

sion of Koopman's problem, i.e., the search region is divided

into n subregions with an a priori probability vector on

the target position. The algorithm is obtained from the ap-

plication of the Kuhn-Tucker conditions for optimality to

the resulting convex programming problem.

Blackman (1959) considered the following discrete search

space variation on the Koopman problem. The target is not

present at the beginning of the search, but the searcher has

a prior distribution of arrival times, and the objective

is not the maximization of the probability of detection,

but minimization of the expected time to detect the target

after arrival. If the time of appearance of the target is

uniformly distributed over a long interval of length T, the

author determines the order in which the various possible

locations should be scanned to minimize the expected time
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between the appearance uf the target and its detection

Blackman and Proschan (1959) studied similar problems of

objects arriving in accordance with a Poisson process. U
Having arrived, the objects appear (and remain until de-

tected) in region i with probability pi. A single scar: of

the ith region costs ci, takes time ti, and, if the object i

is present at the start of the scan, will detect it with

probability (l-qi). The resultant gain gi(t) is a non-

increasing function of t, the time between the arrival and

the beginning of the detecting look. Considering only

cyclic search schedules, i.e., tnose which repeat after D

units of time, where D is arbitrary, the authors derive

the optimum search schedule.

Gilbert (1959) considers a two-region search problem,

with continuous detection and including nonzero switching

times, with the objective of minimizing the expected time

until detection. His results are summarized in two theo-

rems: The first gives necessary conditions on the optimum

solution (sequence and allocations); the second, upper and

lower bounds on the value of the objective function. In the

special case in which the detection probabilities satisfy

the Law of Random Search and are identical, the first theorem

will in fact yield the optimal solution.

iHere the objective is to GeterMiILe = , _ QtiMai se.,uence,
i.e., a sequential rather than a parallE. searcn -z'o lem.
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MacQueen and Miller (1960) deal with the problem of

whether or not a search activity should be started, and, if

started, whether or not it should be continued. Their mod-

el gives rise to a general functional equation for which

existence and uniqueness conditions are given.

Pollock (1960) introduces a discrete detection model

for the two-region search problem and determines the optimal

sequential strategies for this model. As the search pro-

gresses, the a posteriori probabilities of target position

are obtained using Bayes' Theorem. Switching rules are de-

rived for the search sequence which minimizes the expected

length of search. The author makes some comparisons of the

optimal values of the expected length of the search for dis-

crete and continuous detection models, deriving the condition3

for similarity. He also makes the important observation

that, fnr the modele under consideration, the criteria of

(a) maximizing the probab.* detection by the end of

a fixed time and (b) mini he expected length of time

until detection; both lead .. .a.e same results in terms of

the allocation of effort.

The detection processes in Koopman's formulations were

restricted to those which satisfied the Law of Random Search;

de Guenin (1961) generalized these processes. He made the

following assumptions regarding P(N), the probability of

detecting the target with an effort O(x) when the target is

at x:
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(1) P(O) :0

(2) '(* FI() > 0

(3) P'($) is a decreasing, continuous function of *
(4) PI(O) > 0, Pl(-*) = 0.

From the above properties, P'(*) has an inverse function

* = f(P').

The basic problem becomes

max J p(x) P[E(x)]dx

S.T. (x)dx =

(x) > 0

where p(x) is the probability density function for the target

location. de Guenin's major result is: "whenever the distri-

bution of effort is optimum, the marginal effort required

to increase the detection probability at any point is propor-

tional to the probability density, p(x), of the location of

the object."

Zahl (1963) considered the following general class of

problems:
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max ff xY(x)J]dx

S.T. fg[xY(x)]dx constant

a(x) < y(x) < b(x) .

He gives necessary and sufficient conditions for a maxima.a-

ing function y(x) under fairly weak conditions. One may

readily interpret the above problem in the search theory

context, i.e., with the notation used for de Guenin, take

0(x) M y(x) ,

f[x,y(x)] = g(x)P[o(x)j

g[x,y(x) * (x) .

The author requires only that the conditional detection func-

tion P(0) be nondecreasing in *(x).

Dobbie (1963) develops sufficient conditions for Koop-

man's additive property to hold. This property states that

the distribution which maximizes the detection probability

with a given amount of effort, 0, has the interesting pro-

per'ty that it is the sum of the optimal distribution of ef-

fort 01 and the conditionally optimal distribution of effort

¢2' (€ ) = 4) given that the target has not been found

with the previous distribution of effort 9i" The sufficient

condition requires that the conditional detection function

be an increasing concave function of the search density
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function. The author also pcints out that one can express
Ii

the expected effort required to detect the target as

r Q(o)do (1 - ()Oi

where P(O) is the probability of detecting the target with

effort distributed according to a particular effort density

function. From this equation, one can see that the expect-

ed effort, e.g., the expected time to detect the target, is

minimized by always distributing the effort to maximize the

probability of detection with the effort expended thus far.

This suggests, under the conditions of the concave objective

function, that the strategies for both problems are identical.

Pollock (1964) develops search strategies to minimize

the expected cost of search. The search process is represent-

ed in terms of a stochastic dynamic program. The optimal

search strategies as well as the associated minimum costs

are given. It is shown that the optimal solution is the Wald

sequential probability ratio test.

Matula (1964) derives conditions for the existence of

an "ultimately periodic" search program in the following con-

text. An object is located in one of a finite number o. pos-

sible locations with a priori probability pi " Associatel

with each location i is a cost for searching that location,

Ci, and an overlook probability (Ii. The probbilcn .- to de-

termine a sequence of locations to be searched such that the
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expected cost of finding the object is minimized. A program

is called ultimately periodic if after a transient period

of length T, the sequence of locations to be searched is

repeated with the length of the period denoted by e. The

author obtains the following theorem.

Peziodio Searoh Theorem

A necessary and sufficient condition for the

existence of an ultimately periodic optimal program
is that the ratios Clog qi/log qj] all be rational.

It is interesting to note that the limiting frequency of

search of a location for any optimal program depends only

on the overlook probabilities, not on the initial probability

distribution on target location or even the relative costs.

Kadane (1968) studies the problem of choosing a strategy

to maximize the probability of finding a stationary object

in a discrete search space when a budget ceiling is imposed.

He also assumes that the overlook probability, a discrete

detector is assumed, may depend upon the region and the num-

ber of previoue Zooko. The major result in this paper is

the following extension of the Neyman-Pearson Lemma,

Theorem

Let {P and {Ci be arbitrary nonnegative se-

quences such that £ Pi < -. Let X be the class of

sequences Xi, such that 0 < Xi It V,1  then the

maximum of
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S.T. EXiPi 1C

C Li
X. X

is attained. It occurs when and only when

01 Pi < rCi•i

Xi
1, Pi > rCi xi i

for some r, 0 < r < *, and r XiCi : C.

The author describes an integer programming algorithm (branch

and bound variety) adapted to the above problem. The ra-
tio Pi/Ci is the appropriate decision variable in the sense

that searches with large Pi/Ci should be included and those

with small Pi/Ci excluded. Pi/Ci plays the role of a cost-

effectiveness criterion. Zahl (1963) gave the continuous

analog of these results. Black (1965) presents a graphical

argument for the optimal sequential search procedure for .

the minimum cost problem. He chows that the policy with the

minimum expected cost is generated by the rule: "Always look

in the region for which the posterior probability "given

the failure of earlier looks) of finding the object divided

by the cost is maximt-m." Chew (1967) gives the following

optimal strategy: to maximize the probability of finding

the object in a fixed number, N, of searches, choose those
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N searches for which the posterior probability (given the

failure of earlier glimpses) of finding the objeot is largest.

It is assumed that the overlook probability does not depend

upon the number of previous searches.

Koopman (1946) was the first to examine situations in

which a search is to be conducted for a moving target. Among

these are the barrier patrol search proceJures for a target

moving through a straight channel with the vector velocities

at all points parallel and equal. Another situation studied

is that in which an initial distribution of target location

is given at the time of fix, but with the target moving in

a random direction with an estimated constant speed. The ob-

jective is the construction of a search after a large amount

of time has elapsed from the time the target is fixed to the

initiation of the search. It is shown that in order to ob-

tain the maximum probability of detection per unit time,

the ideal track for a "cookie cutter" detector is an equiangular or

logarithmic spiral which is approximated by the "retiring

square search procedure."

Klein (1968) considered the following moving-target

problem. An object moves about within a finite number of

regions, one per time unit, according to the transition ma-

trix
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where i denotes the searcher's current location and j the

target's next, (obviously the target discovers the search-

or's location at the end of each period). A single searcher,

using a continuous detection system whose effectiveness is a

function of the amount of effort used and the region searched,

checks one region at a time until the object is found, his

budget exhausted, or he decides it is "uneconomical" to

continue. The problem is to find an optimal sequential search

policy, i.e., one which tells the searcher, at each point

in time, whether to search, where to search, and how much,•

effort to use, for the following problems:

(a) Minimize the expected cost subject to achieving

a specified level of the probability of detection.

(b) Minimize the expected time until detection subject

to achieving a specified level of the probability

o. detection, and an upper bound on the budget.

(c) Maximize the probability of detection subject\ to

upper bounds on the expectcd duration of the

search and the expected cost.

The author doesn't solve these problems, but suggests tha

certain of these formulations can be transformed into linea

programming problems.

Pollock (1970) considers a target moving in a Marko-

viam fashion between two regions. Dynamic programG foz thc
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standard problems of minimizing the expected time until de-

tection and maximizing the probability of detection under

L. a constraint on search effort are solved. For certain spe-

cial forms of the transition matrix, decision rules are

derived for the minimum expected time problem as well as

upper and lower bounds for the minimum expected time.

Wagner (1969) develops the following theorem which is

applicable to either continuous or discrete search space

problems.

Theorem

Let e and c be real-valued functions (of two

variables) defined on

{(x,J)Ia < x < b, V(x) < j I u(x), j an integer)

Let * be the set of all integer-valued functions f on

(a,b) such that I(x) < f( ) < u(x) for a< x < b for
which

w h i c h E Mf = b e ( x , f ( x ) ) d x <

b
a

-m < C(f) =f c(x,f(x))dx I
Suppose that g c 0 has the following property: there

exists a X > 0 such that for all x e (a,b) and integersj

*(x,j) - e(x,j-l) < Xlc(x,j) - c(x,j-l] whenever

g(x) < j < u(x)
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e~x,j) - e x,j-1) > )(c(xj) - c(x,j..l)] whenever

then

E(g) a max {E(f) j f e and C(f) < C(g) li

C(g) a min {C(f) I f , f and E(f) > E(g)

"Ira. Onaga (1971) studied the problem of the minimization

of the expected time until detection for general detection

functions. He also includes penalty or switch times which

occur whenever the searcher changes regions. The major re-

sults of the paper are summarized in two theorems. The first

is a necessary condition for optimality and is applicable

to either a continuous or discrete detection function, P(N).
It consists of two characterizations: the first regulates

the optimal lengths of visit times and the second determines

the optimal search order. The second result is a necessary

and sufficient condition stated in constructive form which

is applicable to unimodal probability density functions p(o).

Of special importance to the results of our work is the

following theorem.

Theoram 7

If the density function, p(p), is uninicial, one can
use the minimal concave majorant of p(o) for obtaining

the optimal polities.



1.8.8 Conscousk luae*9oI

Norris (1962) appears to have been among the fir8s to

consider the two-sided search problem. The search is conduc-

ted against a conscious evader who is able to observe the

searcher's actions and capitalize on any errors he makes.

The evasion device of moving between looks is treated. The

game is zero-sum and incorporates a fairly general reward

structure which can include discounting. The reward coefi-

cients associated with this structure, as well as the detec-

tion probabilities, are known to both players. Three levels

of moving costs for the evader are considered for a two-re-

gion search problem. In the case of an infinite moving cost,

the author derives a condition which is a special case of the

Periodic Search Theorem of Matula (1964). The searcher's

"good strategy" in the case of a finite moving cost is gen-

erated by a finite Markov process. Finally, when no moving

cost is incurred by the evader, the searcher cannot gain any

information concerning the evader's position from his past

sequence of unsuccessful looks. Therefore, each look should

be made according to the same probability distribution. In

the N-region formulation of the finite moving cost game, a

"good search" strategy cannot be generated by a finite Mar-

kov process.

Koopman (1968) extended his original work to the two-

sided search situation. It is shown that a uniform distribution
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of search effort on the part of the searcher and a uniform

position density on the part of the target form the optimal

strategies for the resulting zero-suma game.

Neuts (1963) develops, among other things, stationary

minimax strategies for a multistage search game. The ob-

jective is the minimization of the expected discounted return

to the target. A stationary strategy for the hunter is an

n-tuple

N

Y = (Y 1 .."'' YN) ; Yi a--, Y i 2

i~l

which denotes a probability distribution, chosen once, and by

which the region to be examined at each stage is selected.

It is shown that the optimal stationary policy for the search-

er is independent of all parameters except the discrete de-

tection probabilitiis, a result which also holds for the ob-

jective of minimizing tne expected duration of the game.

Such stationary minimax strategies correspond to the fol-

lowing cases:

(a) a mzmoryless searcher,

(b) the target is allowed to move after each region

is searched.

Charnes and Schroder (1967) develop models and methods

to find optimal tactics in an idealization of antisubmarine

warfare, viewed as a gf-1me of pursuit L ttween the hiunter force
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and a submarine. The objective function of minimizing the

expected duration of the search can be expressed as a *to-

chastic game. The solution of this game is accomplished by

solving a sequence of linear programming problems. In the

event the hunter knows the behavior of the submarine, the

game becomes a one-person game and may be treated as a dis-

counted Markovian decision process of the type studied by

Howard (1960).

2.2.3 Searoh and the VieibiZity Prooeea

As noted earlier, Koopman (1946) briefly examined the

situation in which the probability of target presence is

modified by the inclusion of the probability that the target

is visible given that it is present.

Stollmack (1968) determined by both field and laboratory

experimentation that the exponential detection function with

constant rates is a valid model of visual detection. The

study centered on the visual detection of tanks by exper-

ienced personnel in the terrain surrounding Fort Knox,

Kentucky. The detection rates obtained by Stollmack were

shown to be statistically dependent upon range and back-

ground (i.e., the number of confusing forms, ruggedness of

thie terrain, etc.). The empirical relationships indicated

that at mid to high ranges the detectiun rate is as sen~i-

tive to changes in the background as it is to changes in

range. It was shown that differing detection rates and



'visibility conditions were the rule rather than the ex-

ception over the local terrain.

Bonder (1970) and Disney (1970) formulated descriptive

models of the situation in which the target visibility chang-

es over time. Bonder considered the situation in which the a

target and the searcher (detector) may not be continuously

visible during the period of time in which the searcher is -,

examining the subregion containing the target. The searcher

has a detection capability only when the target is visible.

The author considered the following situations within

each search area:

(a) The target may be visible to the searcher for the

entire search interval with some known probability

p (this is the Koopman suggestion),

(b) the target may be visible at the start of the search

period, the length of the visible period being a

random variable with known probability density

function, and not reappear,

(c) a single period of visibility may be exhibited

starting at some random time during the search

interval and lasting a random amount of time.

In each of these cases it is assumed that the target is

stationary in the sense that it remains in a given region, i
although its motion within a region may give rise to the

visibility process. These models are the first to interface

the visibility and detection processes. In each of these

cases, the probability donIty functions for thp time until

detection, the time spent searching the area until a fixed
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number of detections occur, and the time spent seaxching the

total area, including switching times, are derived.

!I Disney described the visibility process in which the

target alternates between visible and invisible states as an

alternating renewal process. He did not consider the inter-

face between the visibility and the detection processes.

The transition matrix for this process is

Vis. Masked

Vis. 0 f1(

Masked (f (t) 0

where f1 (t) is the probability den3ity, function for the time

in the visible state and f 2(t) the probability density func-

tion for the time in the masked state.

Employing some renewal theory arguments, the author

obtained among other things:

(a) 711(t), the probability that the target is visible

in (t,t + dt),

(b) for a fixed time interval of length Td, the distri-

bution of:

(1) the number of times the target is visible,

(2) the total time of visibility. I
1.2.4 Summary and ConcZuaions from the Literature

Review

The review of the open literature on search and reconnais-

sance theory indicated that the bulk of the research acti-

vity has dealt with purely irathemdtical extensions of the

L•
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work of Koopman. In nearly every case, no attempt was made

to relate the mathematical models to real world situationa.

It seems apparent that more effort should be directed toward

the study of search models which afford more realistic de-

scriptions of search scenarios.

A recent research report (Vector (1970)) has noted

the importance of modeling the effects of terrain on combat

processes. Since the reconnaissance activity is a prelude

to such activities, one should also be concerned with the

effects of terrain on the search activity, i.e., how does i
the inclusion of the visibility process effect the optimal

search strategies and returns?

Realistically, the optimization criteria should depend

upon the objective of the operation. Research should be

devoted to the structuring of the total activity, whi.h in-

cludes search, detection, tracking, and ensuing action, be-

fore selecting the optimization criteria. 1

Research is required to understand the behavior of oper-

ationally useful devices, e.g., the effect of multiple scans,

independence between successive looks, coupling of various

types of detectors, etc. In general, a study of the struc-

ture and capabilities of operational detectors is required.

IThe relationship between search dnd cn•,;i;iE action i5 n
studied under this contract and is Leirpg tub1sneC az a
separate report (Kronz, 1971).



The output of many of the "classical" search studies

has been a fixed amount of time to spend searching a region.

The likelihood that searchers will not (or cannot) follow

optimal search procedures suggests research be devoted to the

problem of converting theoretical results into practical

rules of application.

The open literature on search and reconnaissance is vir-

tually vacuous in the important areas of multiple detectors

and/or multiple targets with varying degrees of dependency

within each group. Clearly all of the topics outlined in the

previous paragraphs are of interest when viewed in the con-

text of multiple detectors and/or targets.

1.3 Researoh Area

This dissertation addresses the problem of characteriz-

ing the interaction between the detection and visibility

processes. The work of Bonder (1970) and Disney (1970) is

extended and the resultant mocels analyzed to determine stra-

tegies for the optimal allocation of search effort. Compar-

isons with existing search theory strategies are made to de-

termine conditions under which different strategies, which

consider the visiblity process effects, are required. The mod-

els are further analyzed to gain insight into the intelli-

gence-gathering process.
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Specifically, the problem considered is that of search-

ing for a stationary target located in one of N regions LI

(discrete search space) with prior probability vector P :

(Pls *-*I PN ) " Analogous formulations for the continuous

search space are discussed in an appendix. Although the

solution procedures and (we believe) the results carry

through for the N region case, explicit policies and returns

are given only for the two-region situation to facilitate

both the analysis and interpretation of results. We prin-

cipally consider the case of a continuous detector. Discrete

detector formulations and associated optimal policieL also

are contained in an appendix. Within the region in which

the target is located, it is assumed that during a given

period of time in which a search for the target is underway,

the target may exhibit one of the following types of be-

havior as indicates in Bonder (1970) and Disney (1970).

(a) The target may be visible to the searcher for the

entire interval with some fixed probability v.

This case is also referred to as the "binary" inter-

visibility process in the following discussions.

(b) The target may be visible at the start of the

search period, the length of the visib> period

being a rdndom variable with known probability

density function.

(c) A single period of visibility may be exhibited,
starting at some random time during the search

intcrval and lasting a rarndom amount o Z ti-.



(d) During the searching interval, the target may

exhibit alternating periods of visibility and
invisibility, the durations of each being ran-

dom variables.

Physically, these visibility structures can be con-

sidered in the following contexts:

(1) Search for a target assigned to one region in
which the local terrain, foliage, weather, etc.,

contributes to masking effect.

(2) Search for a submarine in which environmental
conditions between the surface searching vessel

and the target generate the visibility periods,
e.g., thermal barriers to sonar detection devices.

(3) In the case of a single interval of visibility,

the random length of this period could be con-
sidered the length of time until the target dis-
covers the presence of the searcher in his region.

(4) The multiple periods of visibility could also
reflect the target's strategy with regard to ex-
posing himself in order, to obtain information,

supplies, etc.

(5) The multiple periods of visibility might correspond

to the periods a raiding party of guerillas, oper-
ating from a neutral or safe zone, spends in a re-

gion in which they are susceptible to detection.

(6) Searching for schools of fish which periodically
submerge to depths which preclude their detection.

(7) The situation in whicn a data bank is simulta-
neously accessed by many users. When one user has
access to certain information, the others are
tVmporarily denied access.

!
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(8) The problem of detecting a disease, the symptoms

of which exhibit intermittent remission, may be
of interest.

(9) The time until a crime, e.g., a robbery, may be L

considered a random variable, as well as the i.

length of time required to carry out the act.

(10) The general formulation of the search problem

can be interpreted readily in a research and

development context, i.e., one interprets the

probability of detection as the probability of

"discovery." However, the single interval of
visibility with a random start time lends itself

to some interesting interpretations in the re-

search and development context. In many research

situations, one may have some random period of

time, effort, etc., in which the probability of

discovery is essentially zero. Of course, there

may be some alternatives for which this "settling

in" period is unnecessary. Given that one attains

the end of the "settling in" period, one may then
estimate, based perhaps on current market condi-

tions, the probability density function for the

time required to complete the job in order that

the end product will be competive, timely, etc.

Although (d) essentially includes structures (a)-(c) of

the visibility process, the descriptive models, associated

allocation strategies, and analyses of the mocels are pre-

sented in order of increasing complexity for pedagogical

reasons at the expense of increasing the quantity A f

I

-~--~-~-. ~ rr - - V "-
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information, since the research was performed in this

fashion. 1  Because of this writing approach, the principal

new results in search theory are not encountered until the

latter part of Chapter 3 and thereafter.

Aithough the current research was motivated by the de-

sire to learn more about the effects of the visibility pro-

cesses on reconnaissance in the military context, a number

of non-military interpretations of the visibility processes

may be made as well.

1 Morris (i96 7 ), Bonder (1971), and Wagner (1971) have in-
dicated that a principal capability needed, but usually not
developed, in new analysts is the process of model develop-
ment. Writing the paper in this fashion will indicate "how"
it is done, in contrast to presentation of just the end
product which typically appears in journal articles.

B.
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Chapter 2 !J

THE BINARY VISIBILITY MODEL

The Binary Visibility model is described and analyzed

in this chapter. It assumes that, upon the entry of the

searcher into a region containing the target, the target is

visible to the searcher for the duration of the search with

some fixed probability which may be regionally dependent.

The problem of maximizing the probability of detection under

a constraint on the available search time is studied in

detail. Optimal solutions to this problem are obtained for

the situation in which the searcher utilizes a continuous

detection device. Comparisons are then made between these ,

optimal policies and those for which the Binary process is

ignored (the "Koopman" models). A sensitivity analysis ofI

both the optimal policy and its return is carried out. The

objective of minimizing the expected time until detection

is also examined.

2.1 Desoription

We con.,ider only the discrete searU•i space version of

this problem throughout this research. The discrete

search space version of the problem of maximizing the prob-

ability of detecting the target is

-38-
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N

max , PVi1 Pi(ti)

N

S.T. a ti. T , (1)

and

t. 0

where

Pi = probability that the target is in the ith region,

v. - probability that, in the ith region, the target and
3 the searcher are intervisible for the entire period,

Pi(t) = the conditional probability of detecting a target

in the ith region at or before time t.

As noted in Chapter 1, Koopman (1946) gave a matner-at-

ital justification (The Law of Random Search) for a detection

function of the form

"-kit

P.(t) 1 - e (2)

where k is the conditional detection rate.

More recently, Stollmack (1968), studying visual detection,

established the validity of the above expression via experi-

mental data. Therefore, (2) is used as the standard form

for a continuous detection device. Observe that (2) is a

concave function of search time t. Hence, upon substitu-

tion of (2) into (1), one obtains a concave maximization

problem.
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L

5.8 Atloeation of Effort to Meaximie the Probability
of Deteetioo Ji

2.8.3 Model Solution L
In this section, we shall develop the optimal policy

for allocating search time for the Binary model given by (1)

and (2) of 2.1. The reader is referred to Appendix A

for the proof of the modified Charner-Cooper Algorithm which

can be used to determine the optimal allocation (t 1 , ... , tN)

for the N-region problem. We shall discuss only the attributes

of the 2-region situation for the purposes of economy of no-

tation and the inherent symmetry of the situation.

In Appendix A, we develop the rule for determining the

order in which regions begin to receive search effort (First

Allocation Rule [FAR]). For this model the FAR may be stated:

Choose the region j for which

Pjk.v. max { Pikivi.)
pjj 1<i<N

Equation 8 of Appendix A suggests that all effort be placed

in region 1 (assuming plkIv1 ? P 2k2 v 2 ) when T < T**, where

T is the total available search time and

Tn** (P In . (3)P27k2v2

For T > T**, and using an analog of (9) in Appendix A, one

obtains the tollowing for the optimal allocations to the two

regions,

-I
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ti = k 1 + k 2  kn( IA2 + k 2) T

The optimal value for the probability of detection is then giv-

en by1  kl

(lc
KIT) PlVi 1 - P2V~k, e

42 21 -2-

+ 
ekV2 

k2 
e 2.

2.2.2 Comparison with the Xoopman Model

In this section, we examine the situation in which a

searcher, being aware of the earlier results of Koopman

(which assume continuously visible targets), applies them

to situations in which the target is not continuously visible

because he is (a) aware of the visibility process but unwil-

ling or unable to obtain estimates of the visibility param-

eters, or (b) unaware of the visibility process. We utilize

the classical Koopman model since most efforts in search

iFormulations and results for discrete detections are given
in Appendix B. Continuous search space versions of the
model are discussed in Appendix C.
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theory have been essentially embellishments of it and

such comparisons will provide landmarks regarding the ro-

bustness of the classical models as guides for search de- L

cision makers. The following paragraphs, which form a

conceptual summarization of the searcher's position in this

respect as well as the options available to him, are in- •j

troduced only for illustrative purposes.

First we assume that the searcher can obtain estimates I
of the visibility parameters at some additional cost (e.e.,

weather studies, terrain analysis, etc.). In this situa-

tion, the searcher may take the following actions:

(a) Allocate the search effort according to the

Koopman scheme (without obtaining any estimates

on the visibility parameters).

(b) Spend additional funds to obtain the required
1

estimates on the visibility parameters).'

(c) Expend additional search effort under the Koopman

policy in an attempt to make up for the defects
2

resulting from usirng the "Koopman" policy2

1 One might assume that various levelc of spending yield
varying degrees of accuracy in the parameter estimates.
In this situation, it is of interest to determine the sen-
sitivity of the optimal dilocations and returns to ch'anges
in the visibility parameters.

2This will be shown to be a meaningful alternative.
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The outcomes of such actions are, respectively:

(a) A difference in the probability of detecting the

target under a constraint on the total search time
resulting from the use of the nonoptimal policy,

denoted as AP.

(b) By obtaining the estimates of the visibility param-
eters, he can apply the optimal policy. A measure

of the effectiveness of this option is given by
AP/CE, where CE is the cost of obtaining the esti-

mates of the visibility parameters.

(c) The additional search effort needed to achieve the

optimal return has an associated cost CT. The gain

from such an action is computed from the function
which expresses the differenne in the optimal re-

turn under the two policies, E(T), as a function

of the total available search effort, T. Note the
gain from this action will be computed from the

changes in return under the additional effort al-

located via the Koopman policy (we label this gain
AP(T)); however, the costs, CT, may be less than

CE. A measure of the effectiveness of this action

is given by AP(T)/CT.

In the situation in which the searcher is unable to ob-

tain estimates of the visibility parameters or is unaware of

the visibility process, the searcher may take the following

actions:

(a) (Unaware) Allocate the search effort according to

the Koopman scheme.

(b) (Unable) Lxpend additional search effort.

I I



The consequences of such actions are described by outcomes

(a) and (c), respectively, of the first case.

The solution for the Koopman problem is given by (4),-

with vi = 1, for every i. One also observes that in these

equations if v 1 a V2 0 1, then the optimal allocation for

the Binary model is identical to that of the Standard Koop-

man Allocation (SKA); hence, no error results from the use

of the SKA in the einary model. (The result is also true

in the n-region situation, see Appendix A.)

Since we have closed-form expressions for both allcca-

tion procedures, they can be substituted into the objective

function, to form the difference function

E(T) PB(T) - PSKA(T). (6)

k1 k

k1 2  kk N2k

ET e TtP (\ 1  1 - ]1.2

T 1 1 2
E() 2 12 (Pi 1
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We note that lim [P(T) - PsMA(T) e O. Equation 6 only holds

K where, under both policies, both regions are receiving posi-

tive allocations of search effort. In the event this situation

doesn't hold, one has four cases to consider.

The switch points (the values of total available search

effort, T, at which the second region begins to receive some

effort) are given by:

(a) for SKA

T 1 P 1kT*=•In 2-_P2T
'I

(b) for the Binary model [7)

1 Pl k 1 + Vl
T** _p1-2T --" - l- k,

1 v2

If it is assumed that Region 1 is selected first by both poli-

cies, the following situations can arise as a resLlt of the

difference in switch points:

(a) T < T < T*,*the error is zero, since under both
policies all the effort is placed in Region 1.

(b) T < T < T,* under SKA the effort is divided accord-
ing to equation 4, wnile under the Binary alloca-

ti.on all effort is still placed in Region 1, re-
sulting a nonzero error.

in * *
(c) One could have v1 < v 2  in which case T < T,

and the reverse of (a) and (b) would occur, again

the error term is nonzero.

(d) T < T < T, one obtains equation 6 as the error ex-
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Suppose plkl > P2 k2 , but P kV 1 < P2 k2 v 2 , i.e., the >i

infinitesimal detection rate is largest in the first region;

however, the probability that the target is visible is much. i

higher in the second region. In this situation the SKA se-

lects Region 1 and allocates all effort to that region until

T > T*, while the optimal policy for the Binary model se-

lects Region 2 and allocates all effort (T) to that region

until T > Th*. In Figures 1 and 2 we illustrate the above !

points, by plotting the percent relative error, E(T)/PB(T),

in the probability of detection using the Koopman policy

versus the total available search time. Figure 1 contains

examples where both policies begin searching the same region.

One may note that tie peak percent relative error appears to

occur at the switch point for the Koopman model, T*. The

peak error functions and their times of occurrence will be

discussed later in this section.

Figure 2 contains examples in which the Koopman policy

results in the wrong region being searched. These are situa-

tions in which the total available search is highly con-

strained. This suggests that, in such situations, the deti-

sion maker must be aware of the visibility probjabilities for

the search space in order to conduct an effective search.

An analysis of the error function, £(T), was unceriaken

to determine:

(a) At what levels of total available time (T) the

peak differences occur.

-
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(b) What determines their shape, i.e., height, rate of
decay, etc.

For the two-region Binary Search Model, there are essential-

ly four sets of parametric relationships, since one need only

interchange the labels to obtain the others. These relation-

ships are outlined below.

For the SKA we assume that

1

p1  1

22

Case I: plklvl > P 2 k2v 2 , (v 1 /v 2 ) > 1, and T** > T*

Case II: plklvl > p2 k 2 v2 , (v 1 /v 2) < 1, and, T* > T**

CaseILI: pJklv1 < P2 k 2 v2 , (v 1 /v 2 ) < 1, and T* < T**

Case IV: plklvl _ 2 k2 v2 , (v1/V2 ) < 1, and T* > T**

Expressions for the peak error functions and the level of

search time at which the peaks occur are developed and analyzed

below.

Case I

In the first situation, the peak difference occurs at

T T* (k1+k i n k2-+(v) k, ]ITp k 2 1 k + h '
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IA

substituting this expression into the error function gives

-- 12 \ 2

ii
S •k 1  ) k21  -i

+ v2) k, /k.1
vi k + k2

Case II and IV yield the following results

Tp T -1l

and substitution into the error function givesI

1 1
~7 2 (v ][ v .
v2 1~4 12E(T 2 ) + P 2 V, 1 -

p \ l

The peak error is identical for Cases II and IV; nowever,

the shapes of the error functions are different since in

Case IV the Koopman policy starts in the wrong region, while

in Case II both policies start in the same region.
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Case III

In the third case, some suboases must be examined:

for

( )� �P�i) (1 k ) [kp , k + (v k•÷ •
T:-l = -In P2 12 nt4+(2~

and

( v kz 1 k2 + 1 (v k 2 k1/EP1 1k2 (2]k/)2

rk1  (v1  k 2

FTV + -2 + ( v1JR k 2 1 k1 /

Pl. Ii RjF2 \V2/ k, + 1%k k1J)2

In the event this condition doesn't hold,

T - T* -1 in(P272)

and

UT I P2 1 -lk1N k2/kl

2•v I[2 
- (I) i•iI-'
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It can also be shown that the peak error, at least in =

the two-region case, will always occur at or before the larger

of (T*,T**) as follows. One need only observe that for

T > max (T*,T**) the error function given by equation 6, is

a decreasing function of the total available effort T. This L

implies that in general the maximum error appears in situa- 14
tions in which the sear6h effort is highly constrained.

Having closed-form expressions for the peak error func-

tions, one can conceptually take partial derivatives to deter-

mine the sensitivity of these functions to changes in (pi,vi,ki).

However, this is algebraically messy. A straightforward

numerical search for extrema over the entire search parame-

ter space was undertaken and produced the results summarized

in Table 1. From Table 1, it is apparent that the critical

factor is the ratio of v1 /V 2 , e.g., for areas having homo-

geneous visibility (equal visibility parameter values) the

peak differences are small, suggesting the adequacy of the

Koopman policy. Note that, in general, one obtains greater

errors whenever the ratios of the prior probabilities and the

visibility probabilities are opposite in magnitude, suggesting,

in the case kI M k2 , that tne peak error re:ultý. frcra an r-

roneous selection of the initial region searched.

A secondary analysis produced differences in the proba-

bility of detection in the range (.12, .17) for the fulluwing
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Table 1

Maximum Differences in the Probability of Detection

1 1 / p
Fkek v/ 1 1. 10. 100.

.10E27] 0. .0415 .063

---
Pl/P2 •

k2,k v /v2 .1 1. 10. 100.

.059 0. .025 .035

11 .101 0. .10 j.122Spl/P2 =-1i.

k.. \vl"2 .1 1. 10. 100

.1 .0106 0. .0048 .006

I. .i0425 0. .018 .0225

10. .048 0. .027 ].031

P1 /p 2  100.
/kP 1  2 01. 10. 100.

.1 .0118 0. .0005 .0007

1. .0468 0. .002 .0024

10. .0644 0. .003 .0034

100. .065 0. .003 .0036



-54-.i1

values of the search parameters

1 1 pl/P2 C 3, .01 1 v 1 /v 2 1,, .5 < kl/k2 1.5 S

Finally, we note that the above anal.,sis deals only with the

peak differences and yields no information about the rate of
L4

decay of the error function with increasing available effort.

Table 2 presents some additional measures of the ade-

quacy of using the Koopman policy when in fact the target is

not continuously visible. The measures presen-ued in Table

2 consist of:

(a) The expected time to detect using the Koopman stra-

tegy and model tc allocate an unlimited amount of

effort, labeled KET (Appendix A). It is conjec-

tured that a searcher unaware of the visibility

process may use such a measure to characterize a
given search situation.

(b) Since iA the Binary Model the .ultimate probability of

detection is less than unity, one can only make com-
parisons on the basis of the oonditirnal expected

times to detect, conditioned on detection occurring.

Table 1 contains the ratio of tnese conditional ex-
pected times until detection. The numerator is com-

puted using the Koopman strategy in the Binary

model situation while the denominator is computed

from the optimal policy for the Binary Model.
(See 2.3.)

(c) Given that one is using the Koopman strategy in the

context of a Binary search Oituation, it is of in-

terest to determine how much search time must be

- -~ - ~ .i



Table 2

Binary Model Sensitivity

PI/P k/kI Vl/v ,

0.05 0.1

1.4 1.53 1413
0.5 7 j3 8

1 1.0 \ .03
______S._ / 2.

1.64 1.59 1.64 1.~4
1.5 .03 .042

5. KTooa _Z 4.

1.0 1.61 1 .05.0.5 1.5.0361.5 16 .035516
5. 4.

0L.5 0004

4.0

2.5 1.6 1.630
.045 .03

055\2 037

1.1. 0\47oma Exec3dTie

3. Ratio of the conditional expected times until detection under the
respective policies.
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available in order that the ratio of the differ-
ence function to the probability of detection J
under the optimal policy be less than some speci-

fied value. Assuming a level of 0.05, the table

gives the total search time required to reach

that level using the Koopman scheme.

Thus, it would appear, from Table 2, that for situations

in which tV searcher (decision maker) has large quantities

of search time, (T > 2 KET), he need not be concerned with

having good estimates of the visibility parameters. Quali-

tatively, equation 6 enables one to answer such questions

over a range of possbile values for the visibility param-

eters. For example, assume one wishes to determine that

value of T, the total available time for which the percent

relative error is below some preassigned level, say P0" By

equating the error function, equation 6, to this value and

solving for T, one obtains the required level of time. Table

2 contains some numerical analyses of this nature. For ex-

ample, in the situation in which pl/P 2 r 2 and kl/k 2 = 1, if I
the decision maker estimates the ratio of v /V2 at 0.1 and

assigns 6 units of search time, su:ch an assignment will yield

a relative error of less than 0.05 even if vl/V2 turned out

to be as low as 0.05. Of course, if the ratio turned out to

in the interval (.1,13, the actual percent relative error

will be even less. Note also from Table 2 that the 6 units

of search time are approximately three times the Koopman

expected time until detection. The searcher has the choice
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of obtaining estimates of v1 and v2 at some cost (e.g.,

-• weather information), or expending extra effort by disre-

garding the visibility process and following the Koopman

scheme. If the decision maker has means of obtaining esti-

mates of vI and v 2 , the above analysis provides a sensitiv-

ity study of the cost to him of using the Koopman scheme,

i.e., failing to obtain them.

2.2.3 ModeZ Sensitivity

In the following paragraphs, we present the results of

a sensitivity analysis with respect to the model visibility

parameters for both the optimal policy and its associated

return. In order that the following results hold, it is ne-

cessary to assume that the available search time is larger

than T**.

Consider first, the sensitivity of the optimal policy.

The relevant partial derivatives are listed below. For the

optimal allocation to region 1, one has__--

at 1  1  ,and at 1  1
TV7 k + k d - -1 2
1 1 2 1 v-1 2

For region 2, we have

at 2  1 (l 1 andat2

TV2 k1 +k2\(2) Tv1 1 +k2 I

First, some general observations. Note that the larger

vi (0 < vi S 1), the less sensitive the optimal allocation

to changes in v. Also, the optimal policy is fairly robust



with respect to changes in the visibility parameters whenever

the detection rates kl,k2 are large. Finally, we note that

the above partials are independent of the level of available

search effort. This suggests that the optimal policy will be

much more sensitive to changes in the visibility parameters

whenever the total search effort is limited. We note in .

advance that such independence will not be the case for the

models of Chapters 3 and 4. These results imply that:

(a) the decision maker need not be concerned about small

errors in his estimates of the v. in the situation in which

the detection rates are high, and

(b) as the estimates of vi tend toward unity, small er-

rors in them will have little effect on the optimal policy

unless the detection rates are very small.

Next we examine the sensitivity of the o'-timal return

function to changes in the visibility parameters. In order

that results remain valid, the available search time must be

larger than T**. The partial derivatives are listed below

with comments whenever appropriate:

k1 k2  k1

ap(T) e e1T ( ki 1k 2 >o
av 1  p2 22

klk k

_____-Fk T' 1  kl+k]ap(T) 122 T 2 kk2av 2 P2 Plkl~ 1 0
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Here we note that the sensitivity of the optimal return increas-

es with increasing search time, T. However, the maximum sen-

sitivity is determined by the prior probabilities on target

presence. The greater the prior probability of target presence

in a region, the more sensitive the optimal return to changes

(errors) in the estimates of the visibility parameters. The

above interpretation doesn't imply that the optimal policy

is robust for small values of total available search time,

since, on a relative basis, relative to the optimal return,

the sensitivity is higher for small values of search time.

We can summarize our analysis of the Binary process by

noting that tie important effects of this type of process

occur under nonhomogeneous visibility conditions and for

search situations with limited total available search time.

2.3 Minimization of the Expected Time Until Detection

2.3.1 Model Solution

Recall the arguments givwn in Appendix A for the value

of the objective function in problem of minimizing the ex-

pected time to detect. These will 0,Ia here also with the

following important difference. The optimal value of the

probability of detection for the Binary model, unQ'>r a con-

straint on the total search time, is in the limit as T - •.



-60-

(w) = pl + :2 v 2  < 1, for 0 < v 2 v< 1 • ,

Then with probability (I - P(m)) the search is unsuccessful, 4
and the expected time to detect increases without limit.

In order to see this more clearly$ consider the following ex-

pression for the expected time to detect:

E = lim tdP(t) + T(l - P(T))

For the Binary model .

lim (1 - P(T)) e e > 0
T-*

hence, the unbounded expected time to detect.

One can, however, consider the conditional expected

time to detect, given that detection ultimately occurs, i.e.,

E ? tdP(t) .
Ef.

0

Proceeding as in Appendix A under the assumption that

the searcher starts in region 1 , we obtain for the optimal

value of this objective function. kiJ

E i[ ekT**
p[A-T l~l •l1- e Pllp2 k2 v' J

kk 2 T**

1+ e k 1 + 22T ,
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where Tk* is given by (3).

For the case in which the infinitesimal detection rates

are identical, i.e., plvk 1  p P 2 v 2 k 2 , one has that

kE + k2

whish is identical to the unconditional expected time to de-

tect for the standard model. Of course, E is the oonditionat

expected time to detect; with probability (1 - P(-)) the

target is not detected.

2.3.2 Comparison with the Xoopman ModeZ

In this section we shall again consider the case of the

partially informed searcher; however, the objective of the

search will be the minimization of the conditional expected

time until detection. Recall that our mode of comparison

is that of a searcher who is aware of the Koopman (1946)

results but is not aware of the target behavior and/or visi-

bility conditions. In such a situation, he would make use of

Dobbie's (1962) results for the expected time problem, i.e.,

the policy that maximizes the probability of detection is also

the one which minimizes the expected time until detection,

if the conditional detection functions are concave. Proceed-

ing as in Appendix A, using the Koopman allocation policy in

the Binary model, one obtains for the optimal value of the
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conditional expected time until detection for a 2-region

search situation, I
E.(PlVl P2V2 ) " PlVl [II [- e T "klT

4. ' +P2v2 - £~

1 .
T e!

k k T*

12
kI + ]k k""

+ k k• e
1 22

where T* l n,.---.

If region 2 is searched first, then T* is defined accord-

ingly and one makes the obvious changes in the first term of

the above expression.

In order to complete our comparison with the Koopman

model, we form the ratio of the measure just obtained to that

resulting from using the optimal policy for the Binary model

in the computation of the expected time until detection.

Table 2 (repeated here for convenience) contains the results

of several such comparison. It is interesting to note that:

(a) Although in certairi cases the Koopman policy yields

a small maximum difference in t!-, probability of
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Table 2

Binary Model Sensitivity

Pl/P2 k2/kI1 Vl1 V 2

0.05 0.1

1.14 1.53 >1 4
0.5 .

.1.0 .09 .037
S. 2.

1.64 1.519 1.64 1.411
1.5 7.03.0\42

S. 7/4.

1.23 1.61 i.3 1319
1.9 1.86 21.92 1.156

5\0

1.5 X .04 .05
2S. 4.

0.5 1.s.0281.5 . .037L.6

5S.2 4.

1.78 1.9 1.78 1.35
1.0 X .047 . 0376. 6.

-1.68 2.05 1.68 1.65

1.5 .*.045 .031

1. KET-Koopman Expected Time.

2. E(T)/P(T): Value of E(T)/P(T) and time at which E(T)/P(T) < .05.
3. Ratio of the conditional expected times until detection under the

respective policies.



-64-"

detection, the same policy yields an increase in

excess of 50 percent in the conditional expected
time until detection. For the Binary model, the
long-term allocation rates are identical to those
resulting from the Koopman policy. The larger

ratios of the expected time in Table 2 occur,
for the most part, as a result of the Koopman

policy selecting the wrong initial region.

(b) The allocation of search time on the order of
--3 KET, reduces the error function to less than

0.05; however, cost-wise, in terms of the minimum
cost of searching, the Koopman policy is extremely

inefficient for the ranges of Table 2.

(c) For the parameter raniges of Table 2, and a con-

stant value of p 1 /P 2 , the ratio of the conditional

expected times until detection tends to increase

with increasing k 2 /Iel. The effect of increasing

k2/k 1is greater than that of increasing the ratio

of prior probabilities.

II



Chapter 3

A RANDOM INTERVAL OF VISIBILITY: INITIALLY VISIBLE

The "single-interval-of-visibility" model is described

and analyzed in this chapter. It is assumed that the

target is visible upon the searcher's entry into the appro-

priate region; however, the length of time it remains visi-

ble is a random variable, the distribution of which is pos-

sibly regionally dependent. This model might describe A

situation in which a target, operating in the area about

to be searched, possesses detection gear. The length of the

"visible" period is analogous to the length of time required

for the target to become aware of the searcher's presence

in his region.

The problem of maximizing the probability of detection

under a constraint on the available search time is examined

in detail. A comparison of both optimal policies and asso-

ciated returns for the standard Koopman and random interval

models is made. First-order sensitivity analyses on the

optimal policy and rcturn for this model are then described.

The minimization of the conditional expected time to detect,

given unlimited search effort, is also considered.

-65-
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3.1 Desoroption 4II1

As Bonder (1970) points out, the probability of detec-

tion in a given region under this model, in an infinitesimal

interval dr, is given by

P(T)d= Pr{T < T + dTltarget presence g
dt

t > T)Pr{t > t},
V V

p(T)dT h(t)dt

where

1d z time until detection,

p(T) = probability density function for Td%

t = time that the target remains visible, and

h(P)dT z PrtT < t v< T + dTl

Then the probability of detection in the ith region given t,

the time spent searching, is

PiCt) pOpi(O)RT)dt , (8)"

3 .
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where,

R)f h(t)dt

The problem of maximizing the probability of detection over

a discrete search space is then given by

N

max E Pi P(T)fC-)dT

iml

N

S.T. t <(9)

3.2 Allocation of Search Time to Maximixe the Proba-

bility of Detection

3.2.1 Model SoZution

Recall the comments made in Chapter 2 concerning the

theoretical and empirical relevance of the form of the con-

ditional detection function we have assumed, i.e.,

-ki.

pi(T) = kie , r -> 0.

In view of the interpretation of the visible period as the

length of time required for the target to detect the searcher,

it is reasonable to assume that tne target has similar ca-

pabilities , i.e.,

Additionally, personal correspondence between Professor Bonder
and the staff of the Defense Operations Analysis Establishment
indicate that visibility periods in terrain examined by
the British do follow an exponential law.
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hi() =•i• , .r>O.

Substitution into equation 8 yields

ki -(xi+ki)T 5
Pi(T) = xAi + ki( - e),

and the maximization problem of (9) becomes

max Pi 1 (k e k )ti

S.T. t <T ,(3

ti<- 0,

which is a concave maximization problem. The modified Charnes-

Cooper algorithm given in Appendix A is again applicable.

We again reztrict our discussions to two regions for

the reasons already noteQ. The solution to the N-region

problem is obtained by following the procedure given in Ap-

pendix A.

The condition on available search time which places

all the search time in region 1 is T < T**,

! ~Plkl
where T** ln -

k + A1  ~(11

We have assumed that region 1 is selecteG by tne First

Allocation Rule (Appendix A), i.e., plkl P2 k 2 . !he First
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Allocation Rule for this model is identical t6 that

of the Koopman model.

Choose that region j for which pPkj alNmax Piki.

Using an analog of equation 9, Appendix A, for the

case T Z T**, one obtains, for the optimal allocations,

t ln jplk + ½ *I n(+X 2  + k )TJ

and (12)

t I in P2 k 2\ + (A +k )T}t2 +i k Il + X2 + k 2 (Pll+ k• 1 1 ) 1

Note that in the limit as X 1S2 - 0 (the mean length of

the visible period increases without limit) one obtains the

Koopman model. The probability of detection under the

optimal policy is then given by 1

(Xl+k 2) (Al+k) (M2+k 2 )

X (k ; +k X+ X4

PMPl 1PI' 3 1 1 22 (1 +k1 )(2 k2 )

P2k2  [P2 - t 2k] e TJ
k 2 + A 2 L, Lpki

(13)

iFormulations and results for discrete detectors are given
in Appendix b. Continuous search space (continuous de-
tector) versions of the model are discussed in Appendix C.
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3.2.2 Compariaon with the Koopmoan Modeo

In this section we examine the situation in which a par-

tially informed searcher being aware of the earlier results

of Koopman (which assume continuously visible targets), applies

them to situations in which the target behavior is actually

characterized by the random interval ot visibility process.1 3
The consequences (in terms of the probability of detecting

the target under a constraint on the total available search

time) of this erroneous application of the Koopman results

will be compared to those obtained from the optimal alloca-

tions for these models.

First, we note that in equations 12 as X1 , A2 - 0, the pp- U
timal allocation policy becomes equivalent to the stardard

Koopman allocation (SKA). Consider the following comparisons

between the optimal allocations of (12) and -he SKA: for

Pk , and k 2 k, k k 2  A, the optimal allo-

cations are identical and no error results from us4.ng the

SKA. When Pik, = P 2 k 2 , and k,= = the same

conclusion holds. These results also hold for n-regions

•The reader is referred to Section 2.2.3 for a detailed
discussion of the implications of s:uch an analysis to the
decision maker (sc:archer).
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(See Appendix A).1 As shown earlier, the switch points are

given by (assuming plkl CP2k2

(a) for SKA

(b) for the single interval model

i nPlkl1
T** = k + l1 2- _ "

We observe that T** < T* for X1 > 0. Intuitively, this is

reasonable since the target will not remain visible forever

in the first region, hence one must switch earlier.

The following situations can arise as a result of the

difference in switch points (both policies will always select

identical starting regions, i.e., the FAR for this model is

identical to the Koopman FAR).

(a) T < T** < T*, no error, both policies allocate

all effort to Region 1.

iUnder the interpretation of searching for a target with de-
tection capabilities, this result implies that, for identical
detectors for both the target and searcher, not necessarily
equal, the Koopr.an policy is optimal. Hence if the decision
maker (searcher) is willing to make this assumption, he may
proceed as though he were searching for a continuously visi-
ble target. This also implies that for an identical visi-
bility prcoes6, the Xoopman policy is oDtimal onily if p-
P, and k2 = kI. Recall that in the binary process, the'
Koopman policy was optimal whenever vI = v 2 .
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(b) T** < T < T*, the SKA concentrates all effort in jj
Region 1, while the single interval optimal solu-

tion follows (12).

(c) T** < T* < T, both policies split the available

effort. The error term in this situation also

tends to zero as the available search effort in-

creases without limit, as in Chapter 2.
Figure 3 illustrates some of the above situations. The

ordinate again represents the percent relative error, while.1

the abscissa gives the total available search effort. The

results of a parametric analysis on the effects of the rela- ,

tive values of the prior probabiliP s on the error function -1
are given. Note that as the ratio j -r tends toward unity

1the error function decreases. Also note that in each case

the peak error occurs at T = T*, the Koopman switch point.

The peaks will be analyzed later in this section. It is

also interesting to observe the reduction in Lhe error as

1/ 1, as was noted earlier. Thus, a decision maker

(searcher), operating in this scenario with an amount of

search effort r*, will be required to:

(a) obtain estimates of A1 and A2 in order to conduct

an effective search, or

iThis suggests that the effect of nonhomogeneous visibility

may be lessened in the situation in which the searcner has
no prior knowledge on target location. For example, a high
likelihood on target position could b' uffbet by a low
visibility likelihood.
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(b) increase the available effort far beyond T*.

An analysis of the error function was undertaken to de-

termine: A
(a) At what levels of total available effort the

peak differences occur?

(b) What influences their shape, i.e., height, rate of

decay, etc.? I
For the rAndom-interval, 2-region, initially visible model,

one has only two cases to consider, since both policies always

select the same initial region and the optimal policy for this

model starts splitting ,th. effort before the Koopman policy.

These cases are

.4E(T)Case (1) -*- < 0 for T > T*, and

a(T)Case (2) > 0 for T > T*.

where E(T) denotes the difference in th.! probability of de-

tection under the two policies. In the first case, we ob-

oerve that the peak always occurs at T*, since the error will

increase until the Koopman policy begins to allocate in ..

Region 2 (recall T** < 'T*). While in the second case, one

must utilize numerical techniques to solve for the tr.me at

which the peak difference occurs. 1 The following are

iThe unimodality of the error function is established by
noting that it can be exp.'essed as the difference of two
exponential functions.
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sufficient conditions for each of the above cases:

Al A2Case (1) F-
1 2

Case (2) p k P k V T* T** 0.
1 1 22

This implies that the relationship between the detection and

visibilfty processes is homogeneous across regions. Physically,

one might view this as representative of the situation in

which whenever the searcher's detection gear is affected by

regional conditions, the target's gear is also affected in the

same degree. The error function evaluated at the peak for

Case (1) is

E 1 l (11(k 2 /k1)) 1

pW- (-k 2

wher'e k. A= 4i ki.
+12 2 P1 k1k2

Given two search scenarios witn the following properties,

where the first subscript denotes the region.. the second the

search situation, p,, = P1 2 = P2 1 = P 2 2 .
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All X12 X2 1  X22k 11 k21, kl12 -- k22, and k1: k2'2i

then the peak error functions for both cases are identical

even though the times of occurence are not necessarily iden-

tical. Thus as long as the relationship between the detection

and visibility process is homogeneous across regions, the

decision maker can expect the same maximum error in using the

Koopman poliQy, without having knowledge of the visibility

parameters.

Since in Case (2) an explicit expression for the error

function cannot be given, one must resort to numerical tech-

niques. The following numerical procedure was utilized:

(1) Starting at T = T* compute E'(T + &T) until that
value of T for which E'T) < 0.

(2) Use an approximate Fibonacci search on the interval

obtained in step (1) to obtain T.

(3) Substitute that value of T into the expression for

EMT).

(4) For large values of T (i.e. , T >> T**), E(T), in °-

this case, is approximated by
klk klk2
1 2  --X- T

k k -k T k+k
E(T) - e -e ..kl ( 14)

1 2 
A

kAk klk2-

k 2 P2 e- 1  T 1 el2 T2

k2
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Table 3 gives the results for a series of computer runs which

were made in an effort to study the sensitivity of the above

functions to changes in the search parameters. It contains

the measures introduced in Section 2.3.

First we note that in a great many cases the peak dif-

ference in the probability of detection is extremely small,

suggesting the adequacy of the Koopman policy. The notable

exceptions to this observation occur when the visibility

parameters are nonhomogeneous. Note also that the assump-

tion p, = P 2 is not critical relative to the optimality of

the Koopman policy in those situations in which A1 = X2 and

kI = k 2.

The results of Table 3 deal only with the peak err-ors.

One must utilize equation 14 in order to determine their

rate of decay with increasing search effort. For example,

if AI = 10, A2 = .1, and k = k2 = .1 (see Table 3), we

determine that value of total search effort for which E(T),

given by equation 14, is less than .01. Equating E(T) to

.01 and solving for T, one obtains T = 28, and T* = 7.

3.2.3 ModeZ Senastivity

In the following paragraphs, we present the results of

a sensitivity analysis on the visibility parameters for both

the optimal policy and its associated return. in order
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Table 3 I

Random Interval Sensitivity Results

pl/P 2 =2 T*-6.9 T*h3. T*=1.6 T*=0.7
kl•2 ]r•• k =•1. k I M.1 k I =I*•

Sk1 =,Iki1 k1 =.1 ~ 1

A 1 2 k,=.k k al.

7.05 1.03 .002 1. .002 1.02 .001 1.
I .014 .001 .0006 .0004

•016 1.12 .001 1.2 .13 1.1 .013 1.1.01..! 1. * .01

.004 .0006 .02 3.58

002 1.23 .025 1.4 .72 1.3 .095 1.3
10. * .015 * .05

.0005 5.72 .08 2.25 j
. .62 2.2 .08 1.1 .001 1.7 .05 1.1

* .025
.10 .028 .0004 1.8

.32 2. .04 1.1 .08 1.11 .05 1.

.03 .015 .014 .014 •.

.05 1.2 .007 1. .60 2.1 .016 1.1
10.

.003 .002 .05 .004

.95 3.2 .53 1.6 .12 2.5 .60 2.2.1 *.04 .13

.12 .07 4.3 .83
.82 7.3 .32 2.7I .02 1.3 .62 2.2

10. 1. .03 .03 .003 .10

.33 13. 05 2.2 .18 2.5 .32 2.
0 003 .003 .007 .03

'1 3

2 *Case 2

1. Relative error at the peak difference.

2. Peak difference az time of occurence, if not equal to T.

3. Ratio of conditional expected times (Koo-man/cptimal).
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that the following partial derivatives hold, it is necessary

to assume that the available search time is larger than T**.

The relevant partials are listed below. Consider first the

sensitivity of the optimal policy. For the optimal alloca-

tion to region 1, one has

at1 t_
+ IZA+ + k2) -

and

at - "2___+ _ _2___ _0

ax 1  k + x2 + k •

Symmetrically, for Region 2, we have

at 2  t 2

a2 ('AI k + < + k2 ) 2 -

and

at 2  t1
-1 20.

•AI ( + ÷ * k + • k2 ) >

First we observe that the higher the detection and/or visi-

bility rate, the less sensitive the optimal policy to changes

in the visibility parameters, i.e., the policy is fairly ro-

bust for good detectors and visibility situations in which

-~~-~-~r---- - - -
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the rate is high. It is also apparent, as was not the case

in the Binary model, that the sensitivity of the optimal

policy increases linearly with T, the total available search

effort (since tI is a linear function. of T). Increasing

the visibility rate decreases the allocation for that region.

Intuitively, this is reasonable since an increase in X im-

plies a decrease in the mean length of the visible period.

Next we examine the sensitivity of the optimal return

function (the probability of detection) to changes in the

visibility parameters. In order that the results remain

valid, the available search time must be larger than T**.

The partial derivatives are listed below. For region 1,

we have

ap(T) P1 pk 1  e~t 1 pk 1\c

1A k2 + 1 e 1

and

lim apl). - l p~ 1  1 1_)1 1..+,X 1 1 i+

where

Al + k 1S- i+ kI + X2 + k-

1 1 2 2
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and

: (X2 + k 2 )T.

From the symmetry of the two-region search situation, one

can obtain M-0 fram the above expression by interchanging•a2

the regional labels. At T a T**, the above expression becomes

S 1 + lT** +

which is nonpositive if T** a 0. Thus we observe that the

decision maker's analysis of the effects of errors in the

visibility parameters rests heavily on the amount of search

effort available to him. As T - -, the magnitude of

is the product of two factors:

Pl kl
= the ultimate probability of detection in the
1 .thi i region,

= the conditional mean time until detection inki + the ith region for the single-interval process,

conditioned on detection occurring.

Although the optimal policy becomes increasingly sensi-

tive to changes in the visibility parameters with increasing

search time, the sensitivity of the return function is limi-

ted by the above expressions. Hence, beyond a certain level

of total avTlable search time, no matter how great the change

in the Ai, the change in the optimal return is constant.
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; • Furthermore, for large detection dndlor visibility rates

that constant approaches zero; hence, under these condi-

tions the return is fairly robust. Finally, we use some

numerical examples to illustrate the above results. Assume

search scenarios characterized by: LJ

#1 #2

I = (2/3,1/3) P= (2/3,1/3)

K (1,0.1) K (10,1)

A (1,i) A (10,10)

T 10. T z 2.0

Then one obtains the following Lensitivity results.

#1 #2

T** 1.5 T** 0.15

t 4..5 tI 0.72

t2 C 5.5 t 2  = 1.28

KET = 5.7 KET 0.45

a -t1.45 at -0.024
1 ~ax 1

atl 1t 17- 0
S 1.76 a = 0.0415 I

aP(T) -0.167 aP(T) = 0.0167 1
I-
I
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Summarizing our analysis of the random interval process,

we note:

(a) the important differences induced by this visibility
process occur under nonhomogeneous visibility con-

ditions (as did those for the Binary model);

(b) while the peak error in using the Koopman policy

occurs in limited search time situations, tne
long-term allocation rates may be sufficiently dif-

ferent from the Koopman rates to induce very slow
rates of decay (recall that for the Binary model the

long-term allocation rates are identical to those

of the Koopman model).

At this point is is of interest to recall that from

the results of Stollmack (1968) on visual detection processes,

differing detection rates were the rule rather than the ex-

ception. Furthermore, the data also indicate heterogeneous

visibility conditions over the local terrain.

3.3 Minimization of the Expected Time Until Detection

3.3.1 Model Solution

Recall the discussion of the problem of minimizing the

expected time until detection in Chapter 2. The same situe-

tic-: holds for this model, namely, that there is a nonzero

probability of failing to detect the target given unlimited

search time. The optimal value of the probability of de-

tef.tion for the single interval model, under a constraint

on the total searc~h time, is given by (13).
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In the limit, equation 6 becomes

Pik k__
I + P2k2 1

lrn P(T) pzk

for AI, x2 >.

As in Chapter 2, we consider the conditional expec-

ted time to detect given that detection occurs, i.e.,

EzjdPt~)

Using the procedure of Appendix A, the optimal value of the

objective function is

1)2

wE e 1i plki ÷~ e-i" +(ikA .
fr +e case fn whihP - P2 T*2 nhn

A -

kk + k2 = l1 2 k2+1

1 2 1 e+ P *

"kilt• (2 R2 I'E2 k2" +

For the casein which pTki p k one has that T** 0 and

that

A

1 l+ k2: k 1 +A1 +k2 +A2
1"(X1 +k1X2 + i* P2

which in the limit~as X1 & X 0, tends toward the correspon-

ding result for the Xoopman model. This is the condit4Qnal
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expected time to detect, with probability (1 - POw)) the

target is not detected.

3.3.2 Comparison with the Xoopman ModeZ

As in Chapter 2, we consider the case of the partially

informed searcher who wishes to minimize the conditional

expected time until detection, given unlimited effort and

conditioned on detection occurring. The partially informed

searcher allocates search effort according to the Koopman

policy in an effort to minimize the expected time until de-

tection. The return from such a policy for the single inter-

val model in a 2-region situation is

Plk P2 k2  plk1  - -T* T)k +I k + i- + 'X kI

1 1 2 2 1 1

k e

k1 2+ 2~ 11

PI k22\"q
_ k2

A

{*+ k.52 + k( Pk2 ) k A 1i+k 2

eR * + P 2 l

[ hre T*k;. T* (nl+k-}

where T* 1 In Jn(k 1~



ii
Tables 44 contain the results of several comparisons

with the Koopman search model, suggesting the following
observations:

(a) From Table 3, Section 3.2.3, note that peak relative
errors of less than .05 do not, in general, imply
that the Koopman policy is "good" for the expected -

time problem.

(b) For homogeneous visibility rates; the Koopman policy
works well for small visibility rate:3, but poorly

for the larger visibility rates (large relative

to the detection rates). 4 Kb

(c) For homogeneous detection rates, the Koopman policy
works well whenever the visibility rates are either .

homogeneous or heterogeneous and less than or equal

to the detection rates.

(d) At pl/P 2 = 10, note that Koopman policy works well
for X 0.1 over all levels of detection rates.

Note also the trend, since it begins improving at

= 2. On the other hand, for A = 10, in
general, the opposite effect occurs implying in-
creasing errors with a increasing prior probability

ratio.

Some implications of these results for the decision maker are

listed below.

(a) Given a great deal of certainty on target location
and a detection rate in the primary region at least
as large as the target's visibility rate, the search-
er need not be concerned with obtaining estimates

of the visibility rates.

-•
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Table 4

Random Interval Sensitivity Results: Ratio of
Conditional Expected Times Until Detection
(Koopman/Optimal)

pl/p2 = 1

2 1 1. .1 1.

. 1. +.

1. 1.5 1.4 1.1

10. 1.9 1.7 1.5 1.7

.1 1.5 1.1 1.4 1.1

1. 1. 1. 1.1 1.1 1.

10. 1.5 1.1 2.4 1.5

.1 1.9 1.5 1.7 1.7

10. 1. 1.6 2.4 1.1 1.5

10. 1. 2.5 2.5 1.
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~ [ Table 5

Random Interval Sensitivity Re3ults:
Ratio of Conditional Expected Times
Until Detection (Koopman/Optimal)

pl/p2 2

1 A2  .1 .1 1. 1.
-1 '0 -r - -- l -O

1.0 1.0 1.0 1.0

.1 1. 2.1 1.2 1.1 1.1

10. 1.2 1.4 1.3 1.3

.1 2.2 1.1 1.7 1.1

1. 2.0 1.1 1.1 1.0k

10. 1.2 1.0+ 2.1 1.1

.1 3.2 1.6 2.5 2.2

10. 1. 7.3 2.7 1.3 2.2

10. 13. 2.2 2.5 2.0
- - --- .
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Table 6

Random Interval Sensitivity Results:
Ratio of the Conditional Expected
Times Until Detection (Koopman/Optimal)

pl/p2 10

1 2.1 .1. 1. 1. k
1.1 1. .1 1. kl

.1. i.i+ 1. + .+ 1.+

.1 1. 1.i + . 1.+

10. 1.+ 1.1 1 .1 1.1+

.1 3.3 1.1 3.+ 1.2

1. 1. 2.4 1.+ 1.8 1.1

10. 1.2 1.+ 1. 1.+

.1 6. 1.8 9. 3.

10. 1. 17.3 2.7 7.7 3.3

0. 16. 1.4 2.8 2.4



(b) On the other hand, if the target's detection rate 1
is greater than that of the searcher, it is impor-

tant the searcher obtain estimates of it.

One can also make the following observations concerning the

implications of these results to the target. 5
(a) Under, complete uncertainty on the searcher's part,

the target should choose his visibility rates, as-
suming they are in some sense under his control,

as follows:
(1) for heterogeneous detection rates, choose homo-

geneous visibility rates, as large as possible.

(2) for homogeneous detection rates, choose hetero-

geneous visibility rates. I
(b) If the searcher has increasing prior knowledge on

the target's position, the target should use his high-
est visibility rate in the prime region.

(c) If the maximum available visibility rate in the prime

region is less than or equal to thu searcher's

detection rate in that region, the tacti- of
remaining in the visible state a random length of I
time is not effective, at least in terms of ratio of
the conditional expected times until detection. I
Certainly, from a unconditional standpoint, the
tactic always has merit inasmuch as it results in
a nonzero probability of failing to detect the tar-

get.



Chapter 4

A RANDOM INTERVAL OF VISIBILITY:

RANDOM INITIATION AND LIMIT

In this chapter we shall consider the situation in

which the target is masked when the searcher enters the

appropriate region; however, the target becomes visible

after some random length of time. The distributions of the

starting time and the length of the visible period may be

regionally dependent. One may view this as a model of a

situation in which the searcher is not sure that the target

has arrived in the search zone at the time the search is

initiated. The length of the visible period could then

correspond to the length of time required for the target
1

to become aware of the searcher's presence.

4.1 Description

Assume that the searcher spends a total of T time units

searching a region. Given that the target becomes visible

at some time pi(0,T), the probability of detecting the target

is (using the notation of the previous chapter)

1The model also has an analogy in a police patrol situation
in which the time until a crime is committed is taken to
be a random variable as well as the length of time re-
quired to carry out the act.

-91-
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I J

TT

Since the above description hinges on the target becoming

visible at p (which is itself a random variable with probability

density function f(p)), the conditional probability of de-

tection, conditioned on the target presence, is given by

P(T) f (:) P(s - p)f(s - u)dsdp (15)

For an N-region search situation, the problem of maxi- -

mizing the probability of detecting the target,given T time

units, is

max A pi ff( p(s - p)H(s - V)ds du (16)
i--i I

I
N

S.T. ti< T,

i:l ->1- > 0



The following special cases are of interest: taking f(U) as

an impulse function at . a 0 yields the model of Chapter 3;

setting M(T) a 1 for T > 0, yields the situation in which

the target arrives late, but never departs (the model of

Blackman O1959 )). In this chapter h(t) has an infinite domain,

situations in which h(T) or both f(T) and h(r) have finite

domains are considered in Appendix D.

The solutions for this model depend upon the distributions

of the time until detection, visibility period, and the start

of the visibility period. We have already remarked on the

appropriateness of

(a) exponential hetectors

(b) an exponential distribution on the length of the
visible period.

We shall consider two examples of start-time distributions.

Consider first the uniform distribution of starting

times in the ith region, given by

0 Sifi(p) = , 0 u<s

10 > Si

Referring to equation 15, and dividing the region of inte-

gration into the appropriate parts one obtains 1

IFormulations for discrete detectors are given in Appendix B.
Cvi.tinuous search space versions of the model are discussed
in Appendix C.



Sq Vl + ki/i -(A + k, "
(t (i

eJ

Noteý that the limit of (17) as t is

k ipi -lir PPi(t) =- S
t -P. M Ti +

which is equal to the limiting result for the model of Chapter

3. Finally we note thz .inct

a.

.I



-ks i{ ýXi k~ > 0t

a 2P(t)-

kipi "[ . X.+ k i)t( "i+k i)S>-=]

the conditional detection function is convex until

t a S. and concave thereafter. We refer to this type of
1

function as peoudo-oonoave.I Consider next the situation in

which the start of the visibility period is exponentially dis-

tributed, i.e., f(V) = Oe for t > 0. Employing equation 15

for the i a region one obtains
-.(A i~ke

kipi ([ie -(Xi ÷k)t (xi + ki)e t) ]

- 1 - 'Xi + k)

assuming 8i A Xi + ki,
P~t) 2 2. 2.(18)-

k ipi [i it
ki 1 - e (i + tit)

If i" i+ ki

1 These have been explored by Zahl (1963) and Onaga (1971);
however, no at tempt was made to provide examples of search
situations which would yield such functions.
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One can show that (assuming Oi 0 Xi + ki)

2a P(t) 1_____i

+ Li

and is negative for t > T

while for 8 X + k., the point T is given by

-i:L mean length of time until the target be-
5i comes visible.

4.2 Allocation of Search Effort to Maximise the Proba-

biity of Detection

4.2.1 Model Solution

Consider first the situation in which the start time is

uniformly distributed on [0,S] (see equation 1?). An exact

analytic (explicit) solution for this model cannot be attained.1

The structure of the discrete search space version of tLe proD-

lem of maximizing the probability of detection under a con-

straint on the available search time is ideally suited for a

1 This is primarily due to the fact that for T < 5, P(T) does
not possess an inverse function.

0b

oEA
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dynamic programming approach. Hence, any subsequent numer- I
ical results for this model (regardless of the assumption

on start times) will have been determined via dynamic pro-

gramming, unless otherwise noted. 1

Several important features can be determined from a

marginal analysis of the model. The First Allocation Rule

for this case may be stated as: Choose the region j for

which

p.k. p.k.
max

1<i<N .

While we are unable to specify an analytic solution in the

more general situation, it is possible to determine the

solution provided T is large enough so that t1 > S1 and

t2 > S2 in the 2-region case. The conditional detection

probability can be written as

+ X + k. )SP(ti.k 1 i - e(Xti tj [Ki +'1is 31
Setting

C?,i+ki )Si

d. e 1-1 
1

_-(Xi + ki)Si

iThe program descriptions and listings are contained in
Appendix E.
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which is a constant, we note that the above function differs jj
from that of the previous chapter by the constant di (inde-

pendent of ti). Accordingly, the techniques discussed in

Appendix A are applicable here and obtains for the 2-

region case

tl + 1 + k in Plkldl + (X + k )T

21  k + 2 +2 2 2
(19) ,

t A1  k 2 + In2 infl + (Xl + k )T ""

Extension to the N-region case is also easily obtained via

the results of Appendix A.

Consider next the case of the exponential distributions

leading to the conditional detection functions given by (18).

The First Allocation Rule (FAR) in this case is given as:

Choose the region j for which

pjkjj- max lki

We also note that as 0. -0 +g for every j, this model tendsJ

toward that of Chapter 3. An interesting property of the

1 Note the similarity to tne optimal all oations for the
model of Chapter 3.
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pseudo-concave detection function, is that (in the case

of identical regions) one doesn't start the allocation pro-

cedure by dividing the search effort equally among the

identical regions as in the SKA or any other model with a

concave conditional detection function (see Figure 8).

Again, while we are unable to detevmine an analytic

solution in the most general situation, it is possible to

approximate it provided one can make the following assump-

tions. First we note that for large quantities of search

effort, (18), under the assumption (X + k) > 8, becomes

PM 1 CX( + k0 eB T (20P(T) = 1 - (X + k) - J (

Also if one has (A + k) >> , then the requirement of large

quantities of search effort may be dropped and (20) becomes

P(T) = k e- T (21)

Next we observe that in the situation in which 8 > X + k

or 8 >> (X + k) the analogous equations (from (18)) become

P(T) P 1 - (22)k + • A 8 - + )j '

and

P( pk e-(X+k)T] (23)P()=k + X
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U
In an N-region search problem th re pssible oeases

S~to consider. Here we shall exhibit one possible result for-

the 2-region situation.

Certainly, under both of the above assumptions, the

resulting optimization problem has the same general form

as those stuaied in Appendix A. In a 2-region search prob..

lem where (Xi + k1 ) > 81 and 82 > (A 2 + k2 ), one obtains

for the approximate allocation scheme

t: .[In (zl/z 2] + (X2 + k 2 )TJ (24)tI TX 2 + k 2 + 1) in[lZ]÷( 2 ,

and t 2 = T - ti. Assuming Z1 > z2 . the approximate switch

points are given by

T* in [zl/Z2 ]
al 1.2

where

ZýJs k 2P202 "

I (k + and z2 -2" (A2 + k 2 )1I 2 k i 18

The results for the other three cases in the 2-region prob- "

lem follow from the appropriate substitutions into (24).

Likewise, the extension to the N-region case is obtained

via the results of Appendix A.

Assuming that

ti
lim _ , a constant,
T+a 2



for the 2-region ca&s in which i 2 X i + kit one obtains

as approximate allocation policies

and
Sinp 2 k2  82 . 1T]

2+2 inF+ 8ij

Finally, we note that the above results can be special-

ized to the situation in which the target arrives at some

random time after the start of the search and. doesn't leave

or become masked. One need only choose A. 0 in each of

the above examples, and, in general,. assume that

H(t) =1, for T ý 0.

4.2.2 Comparison with the Xoopman Model

In this section we examine the situation in which a

partially informed searcher applies the Koopman policies to

situations in which the target Lehavior is actually char-

acterized by the random interval of visibility process.

Recall that the First Allocation Rule for the Koopman

search problem is
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Choose the region j for which

-" max Pik. ,< li< N

while for the uniform-start-time model, one has as the FAR,

Choose the region j for which

"P Piki
max

T l<i<N i.

Thus one could have the following situations:

(a) plkl > P2 k 2 and S1  , which under SKA implies

that Region 1 is selected first, but under the FAR
PIk1  P2 k2 I-

for this model, assuming S < -•--2 Region 2 is
1 2

selected first.

Plkl P2 k 2  .

(b) Plkl > P2 k 2 , -s-l 1 P2 and !"'c S1 , thus
1 =2

(1) for T O (0,T] no error

(2) T eE l',SI), SKA divides effort while the single

interval policy allocates to Region 1 only.

(3) T > Sl, both policies divide the effort.

Figure 4 illustrates the respective policies in the situ-

ation in which, for T sufficiently small, a searcher using

the Koopman policies will place all the search effort in the

i
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wrong region. It also illustrates a phenomenon heretofore

unencountered in the search literature, vis., an optimal

policy which is decreasing with increasing total available

effort. 1 In the example shown, the optimal policy is such

that for small values of search time all the effort is

placed in Region 1, and finally for larger levels of search

time the optimal policy begins to divide the time. We note

that the Koopman policy is nondeceeasing with increasing

effort, as shown in Figure 4. Figure 5 is a plot of the

percent relative error in the probability of detection when

the Koopman policy is used for the allocations described

in Figure 4. Note that for the levels of visibility param-

eters of Figure 4, once sufficient search effort is avail-

able, the parameters satisfy the conditions noted in Sec-

tion 3.2.2 for agreement with the Koopman allocation--

hence, the rapid decay of the error function.

One can make use of the analytic expression obtained

in Section 4.2.1 to exhibit an approximate error function.

For 2-regions, one obtains as an approximate err-)r expres-

sion, 2

IAn exception to this statement is the work of Kronz (1971)
conducted simultaneously with this effort at the Systems
Research Laboratory, The University of Michigan.

2 Note the similarity between (25) and the error function for
the modcl of Chapter 3, equation 14.
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[ (X +_4 .)k 2T (A4l+klQ(- 24k2 )T

ET k.dl a k 2 I iX +2k

(X2 k 2 )keT (Xl+kl)(X 2 +k 2 ) T

+P2k2A 1 + k2 -Xl+ 1 +2 2 +k 2  i

We urd the term "approximate" because in developing the

above expression it was assumed that the total available effort,

T, was allocated as follows by the respective policies:

Koopman Single Interval

k (X2 + k2 )T
t 1 k + k( T t I k + + kT +(26)

(26)"- •
kl (Ai + k )T i•

t2 kl- + k2 T2 k + A2 + kl + A1
1 2 2' 2' 1 1

These allocations were obtained from equations 19 by neglect-

ing the constant terms.

Considering the exponential-start-time model, recall

that the First Allocation Rule is

Choose the region j for which

PjkjB max PikiB "
1<_i<N

The combination of differing FAR and differing switch points

can leaH to the following situations whteL Qiue searches ac-

cording to the Koopman policy.

I I:
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(a) Pik, > p 2 k 2 , 02 > B$, and 01Pkk1 < 02 P2 k2 , thus the

SKA chooses the wrong region under an extremely con-
strained search time situation.

(b) Or, one could have lplk1 > 82 P 2 k 2 and Pik, > P 2 k 2

and

T >> T.

In this case, one has

(1) t (,T* J, no error

(2) t c ET,T), a division of effort under SKA, all

effort in region (1) under the optimal policy,

(3) t E 7T,w), a division of effort under both

policies.

Figure 6 is a plot of percent relative error in the prob-

ability of detection under the SKA policy, and Figure 7 gives

the probability of detection under the optinmal policy.

Figure 6 presents the results of an analysis on the

effects of variations in the rates of the process control-

ling the length of time until the target becomes visible.

Observe that as the respective rates decrease, the percent

relative error carve increases everywhere; and that in each

case, a searcher using the Koopman policy chooses the wrong

initial region. Also note that at T a T*k, the Koopman

policy begins to allocate some effort to Region 1 and the

relative error function begins to decrease. Figures 6 and 7
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enable one to determine the actual magnitudes of these L
arrors, in every case the limiting value of the probabil-

ity of detection is 0.2265 (obtained from equation (16)

when T .
LiJ

Figure 8 contains some results which are character-

istic of the pseudo-concave detection functions for the

random interval model. The figure depicts the optimal

allocation policy for a 4-region problem in which the

regional search parameters are identical. The Koopman

policy in this situation divides the search time evenly

among the regions, but in the random interval model such

is not the case. For the 2-region case in which

+ k1 ) > 01' 82 > (A2  + k 2 )

and T is large, one obtains the following approximate error

functionI

PkI 1 k X12k2)
812k 2  kT 01 0x2 +k 2)T(P2Tk2 e "- kk2 - e •2• 2 2  (7 2

pk 2I ý

One can interpret Ai + ki as the combined detection rate un-

der the visibility process, hence I/(Xi+ki) is the conditional i
mean time until detection, conditioned on detection occuring
in that region. Thus the approximate allocation policies
are always determined by using the smaller of the two rates,
the combined detection rate, ana the rate for the start of
the visible period. i

I
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Again, in deriving the above expression it was assumed that

the total search time T was allocated as follows by the re;- U

spective policies (see equations 24):

Kooma Single Interval
k2T (A2 + k2 )T

1 kI + k2 tl 01 + (A2 + k2 )
(28) , i

kIT O1T

2 k + k 2 2 "01 + (X2 + k 2 )

Equation 27 can be used to study the sensitivity of the error

function to changes in the search parameters as well as to

determine the amount of search time required to reduce tha

error function to some specified value.

Figure 9 is an example of the situatioi; in which the

proper combination of parameters cam yield an error function

which continues to increase over a large range of total

available search effort. In Figure 9, one has X + k > a

and A2 + k2 > 82, hence, as we have already observed, the

approximate long-term allocations become

82 t -I ""

tI 1 + 27 T and t2 + 1

1 2 J. 2

which for this situation are tue reverse of the long-term

Koopman allocation policy. In other words the dominant pro-

cess in this example is the length of time until the target

becomes visible.

--
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4.2.3 Model Sensitivitytt

In this section we present the results of an analysis

of the sensitivity of both the optimal policy and its assoc-

iattd return to changes (or errors) in the visibility par-

ampeters. The approximate allocation policies (equation 26)

and the resulting returns obtained in Section 4.2.2 are used.

Thus we are implicitly assuming that sufficient search time

is available for these approximations to hold.

As was noted, the optimal policy for the uniform start

time model, under the assumption that T >> 1, is identical

to that for the model of Chapter 3. Hence we need only con-

sider the exponential start time model.

For the exponential-start-time model, the sensitivity of

the optimal allocations is determined from the approximate

solution. For the example of this section (i.e., (X1 + k1 ) >

and 82 > (X2 + k2 )), one has the following partial derivatives:

at I t t _Iat1 t2

•81 2 +k2 28 1  ' "2 (X2 + k2 +I)

at 2 - 2 at 2 . 1
ax + k +_ 

_ _ _

A 2  X2 + 2  X a81  qA2 + k2 +

Since the ti are linear functions of the total available search

effort, the sensitivity of the optimal allocations to the visi-

bility parameters increases with increasing available search

effort. In view of the assumptions required for the approximate

solution, i.e., XI + k1 > a1 and 82 > A2 + k2 , for a fixed

L
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Lj

level of search time, the optimal policy will be highly sensi-

L tive to changes in the relevant visibility parameters X2 and 01.

The ramifications of the sensitivity of the optimal policy

must be evaluated in light of the robustness of the return

function, since we are only considering situations in which

the total search time is large enougn to permit one to

utilize the approximate solutionc. Accordingly, the partial

£ derivatives of the return function with respect to the visibility

parameters are given byL
2 •l("2+k2)T

aP(T) (X2 + k2 ) 2T e"B+X 2k2 T + P2 k2 (Ial (a, + X, + k 2) 2 Ae +I kI T2 + k2l

81 (XI+kl)T

a PT) (P 2k2  - 2 +1 2 + a 2

(X2 + K2 )2

0l (X2+k2)T

IAi + kl 1 2 + k2l P~2 I-1+2

J As T + •, one has

aP (T) ~ 0 and aP(T) P P 2k 2

3a• ax2 (A2 + k 2 )

I Intuitively, the signs of these partials are reasonable since (a)

I
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increasing 01 decreases the mean time until the target be-

comes visible in the first region allowing (in a fixed total

time T) more time for searching while the target is visible,

thus increasing the prcbability of detection; (b) increasing

X has just the opposite effect in region 2, thus reducing

the overall probability of detection. Thus, although the optimal

policy becomes increasingly sensitive to changes in the visi-

bility parameters with increasing search time, the sensitivity

of the return function is limited by the above expressions.

Hence, beyond a certain level of search effort, no matter how

great the changes in the optimal policy due to changes in the

Xi' the change in the optimal return is essentially constant.

Thus whenever X and k are large it is robust.

Suppose the searcher had some means of controlling

the visiblity parameters with an associated cost, but not

eliminating them. The above expressions yield the loss or

gains in the return function per unit change in these para-

meters. On the other ht.nd, the decision maker could weigh j
this action against that of using additional search time and

then determine the most cost-effective option. To illustrate I
the relative magnitudes of these partial derivdti\'es, we con- j
sider the search situation determined by IP (2/3, -1/3),

K ( ) A (, 1), a (.1, 1), one has then

11
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22.2 44.4 ;

"I

21

nT20 jTu20

Thus in situations in Rhich the detection and visibility

rates are low, both the optimal policy and return are sensi-

tive to changes in the visiblity parameters.

Appendix F contains the description and results of a

numerical study of the error function over the entire range

of total available search effort in contrast to the above

study of the approximate results. These results are briefly

summarized as follows. In contrast to the models of Chapters

2 and 3,

(a) the use of the Koopman policy will not be adequate

in situations in which the visibility conditions
are homogeneous across the regions of interest,

(b) the error function is not reduced by increasing
the available search time to some realistic level,

(c) the maximum errors do not occur in situations in
which the total available search time is highly
constrained (i.e., less than or equal to the

Koopman switch time).

(d) the availability of extremely good detectors (high

rates) will not imply that the Koopman policy
will yield small errors.

These results imply that the decision maker, in general, must

obtain accurate estimates of the visibility parameters in

order to conduct an effective search, since his option of
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increasing the available search time may no longer be cost-

effective.

t.3 Minimisation of the Expeoted Time JnhtiZ Dteation

4.3.1 Model Solution

In its most general form this model has the property

that the limiting value of the probability of detection under

the optimal policy is less than unity. Thus the expec-

ted time to detect the target increases without limit.

However, one can, as in Section 3.3.1, consider the con-

ditional expected time until detection, conditioned on de-

tection occurring. We c;onsider first the special case in which

the target may arrive (or appear) at some random time after

the start of the search and remain (stay visible). From the

general expressions of the detection probabilities of Section

4.1 we observed that for T * -, the limiting value of the

probability of detection is unity. For the purpose of the

following discussion, we restrict attention to this case.

Recall the discussion of the early results of Dobbie

(1963) in Chapter 1. Namely, that one can always ex-

press the expected time until detection as

E U( - P(O(T))dT,

00

where P(T) probability of detection under the allocation

policy *(T). If O(T) is nondecrEasing in T, and maximizes

~ _ _ _ _ _ _ _ _ _ _ _ _



P(#(T)) for each value of T, it also is the optimal policy

for the expected time problem. From the examples of Section

4.2.2, we recall that the optimal policies for the maximi-

zation of the probability of detection did not necessarily have

the property that the amount allocated a given region was non-

deereasing as a function of the available search effort (see

Figure 4). The reason for this was the fact chat the detection

function' for this model are pseudo-concave. Thus from the

"above we may conclude that the optimal allocation policies

for the two search objectives are different, at least for small

values of search effort.

How then does one generate the optimal policy for the

expected time problem in this situation? Intuitively, it is

clear that the two policies will have to agree almost every-

where. Onaga (1971) studied the most general form of the ex-

pected time problem. As a result of his work, one may obtain

the optimal policy by solving the problem of ma;imizing the

probability of detection using a modified form of the detec-

tion function. In particular, the form used is the "minimal con-

cave majorant '' of th! detection function which is constructed

as follows. Gziaphically the majorant function for a pseudo-

concave function (dasheu curve) is shown as the solid curve in
the figure below.

IThis term was apparently defined by Stone (1971) since it is
not widely used in the mathematical literature.
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The point T is of some interest since the composite curve

formed by the straight line from the origin to (T, P(T))

and the curve P(T) for T > T is the minimal concave majorant
A

for the entire function. T is determined by observing that the

straight line of Figure 10 has the form

P(T) P-(T)T , (29) -

i: order that it be tangent to the cirve P(T) at T +. The

solution of (29)then yields T. In the event one has to re-

sort to numerical techniques, a lower bound on T exists, name-

ly, the upper bound on the region cf convexity for the detection

function , T.

The modified optimization problem which yields the optimal

policy for the original expected ti:ae problem is

I
- -~ -~r''-'--=r-v~- - ~- -
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\A

Max P(T) 0 1 0)

ijl tPcti i

N
S.T' 2 t i -T

t. )> 0 ,
ti

for all T > 0.

The solution is obtained by applying the Kuhn-Tucker (K-T)

conditions to the above concave programming problem. First

the K-T conditions require that for the optimal solution,

when T < Min (Ti) (where T is the Kuhn-Tucker multiplier)
A

for all t. > 0, and when

N

min (Ti) < T < T.i
i-

A

P".(t) (T

for 5on.e j for which tj < ' The last statement implies that

once one starts allocating according to the FAR, say in the

.th1 region, one continues to allocate to that region until

P!(t.) = e:(T,

A
when ti > T. Then one begins to place aZZ the additional

time into the next region, j. This process is repeated

-
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until that value of total available time, T, is attained

such that the optimal policy has the property that
_ U

ti > Ti

for every i. Note this procedure is utilized to determine

the allocation policy, the return for that policy is, of

course, obtained by substituting the policy into the originaZ

problem.

To briefly summarize, we have discussed the procedure

for solving the expected-time problem. Algorithmically,

1. Solve equation 29 for the Ti, i z 1,2,...,N.

2. Solve the maximization problem (equation 30) for all

T > 0.

3. Using the results of Step (2), form

E (1 - P(T))dT

In the following paragraphs, we discuss the approach t.ker

in each of the above steps. The solution of equation 29 re-

quires that one solve a sex of equations for the models of .

this chapter. first, the situation in which the distribution

on the start of the visible period is uniform on (0,S) yields

e fw. t h -
the following equation in T, for the i region,A

,i
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S. 1ST

o -l)c

For the exponentially-distributed-start-time models, one

obtains

(a) (Ai + ki) 0 Oi
^ i (X_ ki)T

T 2 8( k [.i'( i+ki)]e - + (Xi+k .

S-(8 1 -(Ai+ki)T
(8iT + l)e - Oi

(b) (X + ki) 2B .

T- _ - 2 -1)
! -(e

Since the above expressions were derived from the pseudo-concave

detection functions of this chapter we are assured of positive

roots, other than T = 0.

Having obtained the Ti for each region, we solve the re-

sulting maximization problem using dynamic programming. The

very nature of a dynamic programming solution allows us to
obtain the optimal policy for all values of T up to some maxi-

mum, say Tmax1

finally, the output from Step (2), the value of the prob-

ability of detection for each level of total effort using the

iAppendix E contains the program listings for these com-
putations
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above policy, becomes the input to a numerical integration L-
routine in. order to compute the resulting expected time until

detection.

There are two types of errors in this procedure: the

first is the error in using numerical quadrature; and the

second, possibly more important error, is that obtained from
the restriction of the region of integration to the range

[0,Tmax]1. Since expressions for the first type of eiror are

readily obtained (Brand, 1950), we shall make some observations

concerning the second error source. In Section 4.2, it was

observed that the asymptotic form of the expression for the

probability of detection was exponential in nature (See equa-

tion 22), t:.e rate being a function of the search parameters.

Given these facts, it seems reasonable to assume that one may

readily determine an • such that

e-T > I- P(T) for T > Tm

Then the following relationship holds

e-T - e-&T dT f (1 - P(T)) dT (I P(T))dT,

0 0 0

or

e-ýTm T max
(1 - P(T))dT - - P(T))dT

0
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Thus the above expression forms an upper bound on the second

L source of error in the numerical procedure. Of course, if

we specify an upper bound for this source of error, say c,

then one may solve for the corresponding value of Tmax, e.g.,

Tmax - in (€)

Finally, if one removes the assumptions made at the

beginning of this section, i.e., that once the target appears

it remains visible, then the expected time to detect the tar-

get increases without limit under the optimal policy. How-

ever, if we restrict our attention to the conditional expected

time to detect, conditioned on detection occurring, then one

can use the above procedure to determine the optimal allocation

policy and the resulting value for the conditional expected

time until detection.

4.3.2 Comparison with the Koopman Model

The procedure just outlined can also be utilized to

determine how the Koopman allocation policies perform when

minimizing the conditional expected time until detection.

That is, one generates the values of the objective function

for the problem of maximizing the probability of detection

using the Koopman allocation policy for increasing levels of

total available search time, then carries out the numerical

integration required to compute the conditional expected time
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until detection, conditioned upon detection ultimately

occurring. Table 7 contains the results of a study of the

sensitivity of the Koopman policy to changes in the detec-

tion rates for a 2-region search situation in which the

(a) searcher has the maximum uncertainty in the tar-

get's location (P1 2 P 2 )' and ft

(b) visibility parameters are identical. U

Observe that the error (the ratio of the conditional expec-

ted times until detection) is minimized in the situation in

which the detection rates are identical. Furthermore, when

the detection rates are large relative to the visibility

rates, the error is acceptable. Finally, the significant

errors occur in the situation in which the detection rates

are unequal 1 .

4.4 General Single Interval of Visibility Model

4.4.1 Deeoription 'a

In this section we consider the situation in which the

target may be either visible or masked with respect to the P F
searcher whenever the latter enters the appropriate region. "

The probability vector describing these target states is

The reader is referred to Figure 21, 5.3.2 for a comparison
of the late-arrival version of the single interval model to
the analogous multiple interval models. In addition, Sec-
tion F.4 contains the maximum errors and their times of
occurrence for the parameters of Table 7, as well as other
combinations of parameters.

LI
-w Li1
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Table 7

The Sensitivity of the Conditional Expected Time

Until Detection to the Detection Rates for the
Random Interval Model

kN .1 1.

.1 1.3 1.9

1. 1.9 I.+

Ratio of Conditional Expected Times Until Detection

kI
k 2

.1 28.9 30.1

1. 30.1 20.3

The conditional expected time until detection under the
optimal policy, where p, P2 1/2, A I A2 1.,

and 1 82 = 0.1.
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= (f,1-11), where R is the visibility probability and 1-n the

masking probability. The vector T is assumed known for each

of the regions of interest. One might, for example, consider

1=(fl, 1 - fl) to be a vector representing environmental

conditions affecting the searcher's detection gear. Physically,

the single interval of visibility could represent the length -.

of time required for the target to become aware of the sear-

cher's presence. Ab an example, consider the scenario of a

search for a submarine. The masked state is generated by

the fact that the submarine may not have arrived on station

at the time at which the search begins. The visible period .

could be generated by his length of time on station. The vec- - 4

tor I represents the searcher's prior probability on whether

or not the target is on station yet; the vector P, the search-
-. 1

er's prior probability on target location.

In general, the target is visible with probability n upon -

the entry of the searcher into the appropriate region. Given :
that the target is visible, then one has from Chapter 3 that

the conditional probability of detection, given that t time

units are spent searching, is
t

P(t) • p (-)O (T)dT

On the other hand, given that the target is mnasked upo the

searcher's entry, one has that

z

!i
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P(t) f (u)M (t - uWdu

where _tu

M(t-u) (a-u)T(s-u)ds.--•0

Then for the ith region, we have that the probability of de-

tection, given t time units spent searching, is

Pi(t) = Pi iMi(t) + (1 - Hi) / fi(u)Mi(t - udu

= Pi i i i(T)Hi(T)dT + (1 - Hi) fi(u)Mi(t - u)du

"l (31).

4.4.2 Model Solution

Let H = (ni, "'Y, fN ) be a vector containing the proba-

bilities that the target is visible at the start of the search

in each region. We shall consider the example of Section 4.2

in which the lengthe of vi.sible periods and the times until

the start of the same, given that the target is not visible

with probability 1 - ni, are exponenti&lly distributed.

For ai $ (Ai+ki) the probability of detection under these

assumptions is



ilirlm .=..-.-- 
-

-130-

(32)

(x i+k .i)t -B t

AI {lKI 8i 1e + k )e

+i

and for V: Xi + k.

P1 (t) i(ki + X)) (3-)

.i i - it +i
+ (I -Ni~tj- + k I

These detection functions are either strictly concave or

pseudo-concave, i.e., convex until some point, T, and con-

cave thereafter. For equation 32 the convex region is

(1

(l - 1-108I 2ti< i- • + ki)Zn (i + ki)[Oi - i(i+ ki)] '

(34)

In the event the right-hand side is less than or equal to

zero, the detection function is strictly concave. For equa-

tion 33, the condition for pseudo-concavity becomes

1 - 211
ti - -i)
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The First Allocation Rule (FAR) for this model is:

Choose that region j for which

= max p i•ki •

piY 1< i< N LI

Note that this is the Koopman FAR weighted by the probability

that the target is visible. For small values of T, the rule

becomes:

Choose j such that
maxnj Pik %i - 1 +p-1) - nKixi + k))

If 1i is viewed as the limiting probability of an al-

ternating renewal process (the states being the visible

and masked conditions of the target), then (li = i a i

In this case, it can be shown that the detection functions

are concave.

Where the detection functions arc concave, the switch

time "r* (from region 1 to 2) is determined from the solution

of

iSee Section 5.2.1 for the proof of this assertion. The
situation in which the visibility process is modeled as
an alternating renewal process is treated in Chapter 5.
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P(T*)= p2 k2 112

The extension of these ideas to N-regions basically involves

the solution of the Kuhn-Tucker conditions for the N-region

problem.

Again, we can specify an approximation for large values

of T, the total available search time. Since this model is

a weighted combination of the two previous ones, the condi-

tions for an approximate solution are similar to those already

given by equations 20-23. Consider the 2-region example of

the previous section wherein (A. + kI) > 81 and 82 > (X2 +

k2 ). The conditional detection functions are then approxi-

mated by

II(t1) ... p1  .. 1 + k1 )e i1 p 1 .k.1

+lti A + (2.+ L(X1 + kj) - IJ / k, + X

112k 2 p2  -(x2+k2)t2 + (-1 2 )P 2 k2  82 2e 2

P 2 (t 2 ) A2 + k2 e k 2 + A2 62 - (X2 + 2

One obtains then for, the approximate allocation scheme

i+ + k 1n[Uu/ 21 + 02 + kT 2(36)

t2 T T- tI
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where

2 - )P2k282 and
C2 P2B 2 1 (A2 + k 2 )J a

( 1 - n )k pL~U [ k+ ) 1 81 J

4.4.3 Comparison with the Koopman ModeZ

In this section, we examine the situation in which a par-

tially informed searcher, being aware of the results of Koop-

man (which assume continuously visible targets), applies them to

situations in which the target behavior is actually charac-

terized by the random interval visibility process.

The different FAR, can lead to the erroneous selection

of the initial region to receive the search effort, and the

differing switch points can influence the shape of the error

function. Figures 11 and 12 illustrate some of these remarks.

Figure 11 contains the results of a parametric study of the

effects of the prior probabilities on whether or not the target

is visible (present) at the start of the search. The results

indicate that the greatest errors in using the Koopman policy

occur whene.er it is highly probable that the target will be

masked (or not present) at the start of the search. The lim-

iting case of the single interval process is shown and repre-

sents the worst situation in ..erms of the use of the Koopman

policy. Note that as the nI• * 1, the maximum percent
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relative errors decrease, but the rate of decay of the error

function is also decreasing. The decision maker who cannot

estimate the visibility parameters will be concerned in such

situations, since the lower rates imply that the option of

increasing the available search effort to reduce the errors

in using the Koopman policy may not be cost-effective.

Figure 12 displays the effects of variations in f's

on the optimal policies used in the determination of Figure

11. The higher the likelihood that the target is masked at

the start of the search, the greater the length of time spent

in region 1, for any fixed level of total available effort.

Note that the Koopman policy (which is determined from k's),

under large quantities of available search time, allocates

the majority of the search time to the second region.

The approximate allocation policies given by equation

36 give rise to an approximate difference in the probability

of detection under the two policies, optimal and the Koopman,

as a function of time. For the conditions given on page 144,

one obtains
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...............- l 1k 2 T 0 1 (X 2 +k 2 )T

E (T. ) e 1A1+ kI l+ Kif

(1+k )klT Ol (A+k )T.

22 2 12 2(A" +A k2 I

(I - -1 P20

We observe that the sensitivity results of this model are

weighted combinations of the sensitivity results of Sections

3.2.3 and 4.2.3.

Appendix F contains the description and results of a

numerical study of the error function. These are Summarized

below. It was noted that the Koopman policy can be used ef-

fectively in

(a) the homogeneous detector, homogeneous visibility

parameter scenario, and

(b) situations in which the mean time to detect is

much less than the mean length of the visible
period.

The values of R, the prior probability vector on target visi-

bility at the start of the search, are of importance here.

Since for Ri -* 1, the general model reduces to the model of

Chapter 3, urhich has, under the Koopman policy, errors when
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T is small. If, on the other hand, 1 0, one has the ran-

dom-interval, random-start-time model which may have signi-

ficant errors when T is large under the Koopman policy.

La

I ]
I

Ii

I,



Chapter S

MULTIPLE PERIODS OF VISIBILITY

In this chapter we consider the situation in which the

target may exhibit alternate periods of visibility and in-

visibility during the time which the searcher spends in the

appropriate region. As noted in Chapter 1, this type of pro-

cess can be used to chara,'terize the behavior of a submarine

on patro? within a region; a patrol moving through rugged

terrain, foliage, etc.; a school of tuna or other fish. In-

itially, a simple Markovian visibility model is introduced

for pedagogical purposes. Next the target's behavior is

characterized as an alternating renewal process. The inter-

action between the target and the searcher is characterized

as a Markov-renewal process. Having characterized the de-

tection processes, we then study the problem of maximizing

the probability of detection under a constraint on the avail-

able search time for certain special cases. Finally, the

minimization of the expected time until detection, given un-

limited search effort, is investigated.

5.1 Description

5.1.1 A Simple Markovian Model of the Multiple Interval

Process

Assume that we are searching for a stationary target

located in one of N regions with prior positional probability

-139-
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vector P. Within the region containing the target, the

visibility process is going on with transitions, according

to the matrix

Visible Masked

Visible (0

Masked 1 0

between the visible and masked states occurring at fixed, known

time intervals. The presence of the searcher within the re-

gion in which the target is operating induces an absorbing

state which is the detection state. The transition matrix

for this new process is I

Visible Masked Detected j
Visible 0 1 - PD iP

Masked 1 0 0i I
Detected 0 0 1

wherepD is the probability of detection within the ith

subregion.

Assume that a total of M glimpses are to be optimally I
allocated. We allocate mj glimpses to region j, then seek

IjIthe probability of absorption (detection). Let f.ln)denote
1J

the first passage probability from state i to state j, and I
Xn denote the state at the nth transition, i.e.,

I
I
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fi n),X M 1, -(n)

We can express Pij(.n, where

P ij (n) Pr{Xn JIXo 0

as
n

)P(n) 5" (n-K) (K)

K(0

where f(. 0. Let j denote the absorbing state. Then

n

Pr absorptionln looks, XO- i) - fi (K)

K=1

Consider the above expressiorn and note that since j is an ab-

sorbing state, we have

p. (K)
33

for K 0, 1, 2, ... , hence

n n
Pi(n) =. fij(n-K)= fij(K)

K=0 
K--

since f. * (0) = 0
1)

From the above results we can formulate the following variation

on Koopman's original problem.
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UNmaxF Prlabsor'ption (detection) in them ok.

•=i jthregion

N

S.T. mj <: ii

m > 0. J&aJ

where

Pr absorption (detection) in the mj, X. i fjK)

jth region K:I

- P. (Mrj)

The steady state probabilities of being in state i (the visi-

ble, and masked states of the visibility process) are

(see Parzen (1962), p. 256),

(fl1,n2) = (1/2,1/2) ,

therefore

' f (etetion in2 (in.Pr absorption dth. tl i I. i
th region j:l 3

where pj is the probability that the target is in the j

subregion.

For our simple process (for the i region)I
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0 1 -0 p 0 'RDR

0 ojPD flP(-PD 1+DPD

f l-PD) 0 o
00 1

a. ~01

p0 (1-PD) 3  2D'P)P

0 ~01

For k. even and L. > 1, the entries in pt are

P2 P13 P.13

and for k. odd and X£ 1, we have

W- - +1 (L-2)
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where Ix] denotes the greatest integer in the term in brack-

ets. The optimization problem becomes

~l ii

max ~jlKP

N

< N6

nmi >0 1 , 2, .. ,N,

where PK3 is defined above. The above problem is readily

solved using dynamic programming or the results of Wagner

(1969) given in Appendix A.

1
A generalization of the transition matrix is

Then, given the presence of the searcher, the transition
matrix for the search problem becomes

2.('PD)ai('PD PD1
"; 6 0

L0 1

!i
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5.2.8 Charaoterixation of the NMutple Int.ervaZ Searoh
Soenario a* a Semi-Narkov Prooeas

Disney (1970) characterized a visibility process in

which the target alternates between visible and masked

states as an alternating renewal process. The transition

matrix for this process is

f 2 (t) 0

where fl(t) is the probability density function for the time

in the visible state and fY(t) the probability density func-

tion for the time in the masked state.

Using some renewal theory results, the author was able

to obtain, among other things,

(a) nl(t) the probability that the target is visible
in (t,t+dt).

(b) For a fixed time interval of length d, the distri-

bution.; of
(1) the number of times the target is visible,
(2) the total time of visibility.

When the searcher enters the region in which the tar-

get is operating, we obtain the three-state process charac-

terized by the following flow graph

InvisibilitSibili
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The associated semi-Markov transition matrix is

V I D
v 0 Rlt) L(t) >.

Q sI gt) 0 0

D 0 0 1

where

R(t) distribution function for the time spent in the
visible state

F(t) z distribution function for the time in the masked
state

L(t) distribution function for the time until detection

1(t) =dL(t)

r(t) dR(t)

Next we derive the expressions for 1(t) and r(t). Let

p(T) denote the conditional detection function, i.e., if Td

is the time until detection, then
00

p(T)dT z Pr T < T d 1 T +dT Itarget present and visible
I -- for T or more time units

Let h(t) be the probability density function for tv, the I
length of the visible period. 1

1f

~-,r~' -
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Assuming that the process just entered the visible state,

in order for the target to be detected in t time units, td

must be in the interval (tt+dt) and tv must have been at

least equal to t, i.e.,

iL 1(t) a p(t)0(t), where R(t) aj h(t)dt
t

If the target is to re-enter the masked state in t time

units, then td must have been greater than t and tv must

equal t, i.e.,

v(t) F(t)h(t), F(t) f p(T) dt

4- t

The density function for the length of the masked period is

f(t).

Suppose the search must be carried out under a con-

straint on the total available search time, T. The problem

of determining the optimal policy to maximize the probabil-

ity of detection is

N

max 2:Pr Time until absorption in~
i=l region Ui) 4 t i

N

S.T.• ti T

ti >o

Looking at the process just after a transition, for the situa-
tion in which one considers the searcher entering at an ar-
bitrary time, the process becomes a delayed Markov renewal
process with the relevant p.d.f, being the forward recur-fence times of the visibility and invisibility processes.
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We now introduce the distribution function for the first g
passage times as well as the marginal distribution function

of the semi-Markov process. Let G j(t) denote the distribution

function for the first passage time, i.e.,

G MzPr[N (t) >OX= PrN[t 1  tjX 0

where t.1 denotes the time of the first passage to state j --

and N (t) denotes the number of entries to state j in time t.

Let Pij (t) be defined as
1)e

Pi. (t) Z Pr{Xt Z jX 0 - i}

Appendix G contains a number of theorems due to Pyke (1961)

which assist us in relating P and G. From Theorem 1 of

Appendix G, we have1

Pij(t) = P1i(tI*GiJ(t) + 6ij) - Hi(t))"

Let j denote the detection state, an absorbing state, i.e.,

P. i(t) 1 1, for t > 0. Since the search process will never •

start in state j, 6i. 0, and from Theorem 1 of Appendix G, j
we have

pij(t) 1 ij(t) 1 Gij(t)

The procedure for solving the optimization problem follows iIdirectly from the above results:|

(1) By Theorem 2 we may determine nif (S) for the visi-

bble alld masked states,

1 See Appendix G for notation.
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(2) inver ion of nij(S) will yield dGij(t) by virtue of
the previous comments,

(3) having obtained dG ij(t) we are ready to study

the properties of optimization ?roblem%

The optimization problem can be restated in terms of the

G functions as

N

max 1 G1 (ti)
icl

N
S.T. Eti ST

ia1
2

where G.(t) pi. E G.4(t)IP 4, = Pr(X 0 t and p. is the
t=l

j a
probability that the target is in the jth region.

Next we consider the following special case cf the mul-

tiple interval proZ.ss. Let the conditional detection density

function be of the form

P(t) z ke _

and the density functions for the lengths of the visible and

musked times be, respectively1

iBonder's (1970) discussion with the British on combat data
indicated that this form fc.r these processes appear5 to
have an experimental basis.
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h~t Ax't, At~) *

-I

h(C;=^e'l f (t) "le

From the above results the density function for the Li
transition time from the visible to the detected state is

given by

S£I(t) -- P(l)R(t) :ke ('+k)t •

Likewise, the density function for the transition time 6

tront the visible to the masked state is determined as

r(t) = p(t)h(t) = Xe"(X+k)t

The following list gives the Laplace transforms for each

of the above density functions:

Density Function Laplace Transform

g(t) g(S) k

h(t) h(S) =

f(t) fs

L(t) £(S) k
k+ S

r(t) r(S) -
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The Laplace transform of the semi-Markov matrix Q(t)

is
0 k

+ A + k
q(S) I 0 0

C 0 e"S

and

-S
I -q(S) +. ) 6

0 0 e-•

Defining the matrix A(t) as follows

3

A(t) (6ijAi), Ai(t) =T . (t)
*. j=l

Then
* 3

S.d~i(t) = E dQij(t)

j=l

and from the convolution property of the Laplace transform

3A(S) 6 Mi• a~~) RXl(dQij(t)),

^ 1) -- 1 1J

or

0 0r A+ 7
A(S) =0 0

L0 0 1-e S
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1 - ~0 0
X + k + S) LI

I - (s) 0 1 - -- 0

0 0 1e-

Pyke's Theorem of Appendix G states that I

n(S) (I - q)-(I - A) ,

where 3

J(S) ==(p(t))

First we compute the required inverse,

1-e-S ( - e-S) k
X + k + S + k + S "

(I -e-S 1 - e -kSq)- + S)(x + k + 5)

00 i -&)X+k+S

where

D = (I- q)-11 (1 - e-s) - (a + S)(X + k + S)

We are interested in determining n, where

R = (I - q)- (I - A(S)) ,

in particular RI. and !23. C a( " r.ii out the indicated

matrix multiplication,
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1113(S) (1 G -S) k 1

_ k(8+ S)
u( + S)(A + k + S) -

p2 3 (S) (1 - e s) (8 + S)(X + k + BY U

Ok
L (0 + s)(U + k + S) - XOT

Next the mean times to absorption are obtained from (Theorem

3, Appendix G)

1
Jim 1 (1 -q)

S-0

where

q(S) =/ e-st dGist W e-St dP ij (t) =1(s),

0 0

for j 3 the absorbing state.

The Pi3 is determined from kM8 + S)
P13='* +ir 1 u. (+ S)( k + S)"--j , oJ

= 0 + and
UI'3 a k

li23 = lim+ (1 - 1(8 + S)(X + k + S) - x8]J' or

S-0

Xrn4  k + 5)+ k

Ok
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The inversion of U13(S) and 112 3(S) is accomplished

by partial fraction expansion. Since the denominator is

common to both terms, we can factor it into a product of lin-

ear terms. Let

D(S) - (6 + S)(X + k + S) - + (x + k + O)S + 8k

the discriminant is then

b, 4AC (k + X + 8)2 - 4k X + 2xo + (k - )2 + 2xk > 0

since k, X, 8 0. Both roots are negative since

b2 4AC)< b2 4AC > 0 implies -b . V - A < 0 . Denote

the roots by y 1 and .2, where Y2 is the larger. This is pos-

2
sible since b - 4AC 0 0 for k, X, 8 >0. Expand nl 3 (S) by

partial fractions to obtain

k(2 + S) k(B - y 1 ) k(6 - y2 )H13(S) z (S + yI)( + 2 =( -7I)- ( Y2 M1
T YTýT7+ 2) -CY Y1  2 1

S + Y1 S + Y2

Inverting we obtain

-ylt -2 t..
k(8 - y1 )e 1  k(8 - ¥)

dPl 3 (t) M O - k ( 2 i)

1 --(y 2 - y-( - Ye ]

_ k (• ¥ )e - (t Y2 2 e 'Y2 t .

1'2 -YI1



Expanding A 2 3(S) in the same fashion, yields

I 2 3 (S) = -S +-
23YiS+Y

2 T Y2 -Y 1  Y'2 -
S + YlB + Y2

and inverting

dP 2 3 (t) k2 .e1 - eY 2t

Integrating with respect to time, the desired condi-
tional detection probabilities are

P2 3 (t) k( -Y2 1t t1

72 - Y1 7y 2

and
P3t - k [(8 " 71 ) -i e-Ylt) " 7272 -- YlY1 ) - t) i- 2(0 -2 e yt

The limiting detection probabilities are,

lim P13 (t) -kr =lim P23 (t)t-* PI3 712 t-*P3

Also note the following facts:

(i) lim F 3(t) = 0 = lirn P2 3 (t) , and
130 t-0.0

(2) lim F 3 (t) r lin P2 3 (t) -k 1
t-ý te-oo 1l2

Since
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2A 1 2A '

YY2  C/A •

But D•s) S2 + ( + k+ O)S + k8, hence

71 •2•Yy2 = k8.k

We still require the probabilities of being in the visi-

ble and masked states at the start of the searc',. For the

derivation of these probabilities, assume that the

visibility process, as characterized by Disney (1970),

has been going on for some time before the searcher enters

the region containing the target, i.e., that this process has

attained steady state. Let Hl(t) denote the probability of

being visible at time t and H 2 (t) the probability of being

masked at time t. Assuming the process starts in visible

state, then from Disney's results

cI

l(Ft) lC(t) + m (P)FlC(t P)dP

t

R2 Ct) : mz(p)F 2 c(t - )dl ,

"0
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where:

FiC(t) z complementary cumulative distribution for the
length of the visible period

F2 C (t) = complementary cumulative distribution for the
length of the masked period

y = denotes the times between the renewals of the
visibility events

z = denotes the times between the renewals of the
masking events

my(t) = the renewal density function for the y process

my(t) f y(t) + f Yt - X)fy(X)dX .

mz (t) = the renewal density function for the z process

Under the assumptions made about the density functions

in this example

m (t) z A8 [I - (A+O)ty A÷8

A + -
M (t) [8 + Xe-(X÷O)t

zlCt) X +- )

ur 1(t) A + 0 I 1~
t +~
lim Hl(t) + I.
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ii

2d
112(t ni (t 11Bt

Since the visibility process is a continuous parameter

Markov process for this special case, these .-esults follow :

from the theory of such processes

Now given that a specific region is being searched, the

probability of detection as a function of the time spent

searching is

P(t) P1 3 (t)Onl1 ) + P2 3 (t)n 2 (-) .

By summing across regions, we obtain the objective function

for the problem of maximizing the probability of detection.

6.2 Allocation of Effort to Maximize the ProbabiZitLI
of Detection

5.2.1 Model Solution

In this section the target motion, within a

region, from the masked to the visible state and back again

iFrom the solution of

did(t) P(t) X 2)
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is described as an alternating renewal process. The inter-

action of the searcher and the target is then modeled as a

semi-Markov process. As an example of such a situation,

consider an alternating renewal process (whose associated

probability density functions are both exponential). The

problem of maximizing the probability of detection under a

constraint on the total available errort is given by

max P.Lfl.P vi(t.) + (1- Hi.)P M.(ti)

N
C. T. ti T

t >-0 , Vi

where R i denotes the probability that the target is visible

and k.x r _______7ii

pv (t) = 1il)[l- e _
P t (8 Yi i _i

SYiI 2 
(37)

(B - ri 2 ) e-eYi2t

iUnless otherwisQ noted, the parameters are identical to
those introduced in the previous sections.
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and

(t) 1 1 2 jj
1 i2- Yil Yil Ti 2  )

(38) [1
where

2
Sb 4. b 4

SYi2 : " 2 "

b b 1b2 4 c (39)

Yil= 2

and

b A •i + ki + Oi

c --= k

All of the visibility models with the exception of the one

just presented have the following property.

lim Pi(T) < I

We have seen that, for the multiple interval model,

lir P.(T) + 1
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The detection function for any region is convex over

the interval (o,T) where

S CY2 1 Y') ln(y 2 (B - n 2 )/yl($ - nyl) ] , (40)

and concave thereafter.

A necessary consequence of having a detection function

which is convex on (0,F) is that

8_ (41)
0 >6 + A + k>_•

If H is the limiting probability that the alternating

renewal process is in the visible state, then

and the above condition doesn't hold, i.e., the detection function

is concave over the entire range of search effort.

The first allocation rule for this model is:

Choose the region j such that

p k j = max PikiHi , (42)
wil i t<N

which is identical to that of the general single interval model.



Let n be the limiting probability that the alternating

renewal process is in the visible state, then the switch

time T is obtained from the solution of
Si

P II(T s 2 P2k2 f12 2

The solution of the above equation can be greatly simpli-

flied by making the following observations:

(a) Y > 1

plkl Ye IT eY T""

(b) P'(T) : (y2yl) {e ( - yl e) - Y 2  1 - y1l}

(c) (81 - R1%) > 0

(81 -y < 0

Now if YI I - Yl-l or, equivalently,

k
1
+ » 1 then

1 1

one would expect the Y2 term to dominate and the switch times

will be "short." On the other hand, if y 2fl - < -

or k < 1, then one expects the y tern, to dominate andXI1 + 11

"longer" switch times will occur.

t -
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By making use of the observation that Y2 > Yls

approximate solutions can be developed which are applicable

when "large" amounts of total search effort 1 are available.

Under the above assumptions the conditional detection function

becomes

P k _ _ -- t Y 2l tPv(t) Y2 - 71 Y1 1 e ] Y2

P((t) (1 - e Y -t "

These approximations to the conditional detection functions

are of the same general form as those investigated in Appendix A.

For the 2-region case, the optimal allocations become

1 ) ln[ý 1 / 2] 2 TSYll + Y21 12

) n / (43)+ ln + -Yl TSYll Y21 21 1

where for yii, the i denotes the region, and

Plkl[0l- 1 lylll] P2182- f 2Y21]•iy12 -1 7l 22 -y21

and assuming 0 1 > 42 the switch point is given by T* - n

To facilitate the comparison of these revults with those

of the previous chapters, recall that the y's are given by

1These results will also be applicable in the situation in
which y2 >>y 1 '



S+ Bi + k, - i + 1 i. + . i) - 1 k -

2 (44)I Li ="

)i + Bi + k. + u(li + 8i ÷ k.) - 48iki

S. ... -2 ' 'II

The techniques developed in Appendix A are used to

obtain a solution to the N-region problem under the above

assumptions. Consider first the expression under the

radical in equation 44.

( k + S)2 _ #ke = (k- 0)2 + X(X + 2k + 28).

Since all the parameters are positive, we can minimize this ex-

pression by choosing k 8 and X << 1. In which case, Y1

and y2 are given by Y1  -k + X/2 - vRX and -2 - k + X /2 + /rA .

Physically this corresponds to the situation in which the mean

length of the visible period is much larger than the mean

length of the masked period which equals the mean time to de-

tect within a region. Since tne Y.'s are approximately equal

to the k's, the Koopman allocation policy will provide a good

approximation for large quantities of search time. 11 orvi

has 8 B and k << 1, then 71 z k!2 and Y 28. From the

previous discussion on switch times, this situation could lead

to some very long switch times.
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The condition X k = 0 leads to the following values

for y1 and Y2

1 2
Y k(3 - ')and k2 (3 +e

This situation will also yield long term allocation policies

which will agree with the Koopman scheme. Finally, by re-

quiring k = A and P << 1, y1 and become

Sa18/2 and y 2  2k.
I

Since in this case k $ 8, one might again expect the Koopman

policy to be inadequate for long-term allocations.

It was noted earlier in this section that the choice of

Rli as the limiting visibility probability of the alternating

renewal process lead to a concave conditional detection

function. The reaminder of this section will deal with the

extreme limits on fi, i.e., l = 1.0 or 0, since these cases

are, as will be shown, direct generalizations of the single

interval models. In Section 4.4 only a single interval of

visibility was considered, here the target may exhibit mul-

tiple intervals; however, it is either initially masked or

visible. In the former case, the conditional detection

function is

P (t) k l8-YI -YEt ( 2- Y2 ) -Y 2 t

note that

r (ts) i,
V

rt is also ncottd thd•t this function is concave bot all va.lues of
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T since , < l"" + + k

Since I. = 1 for every i, the FAR is identical to the Koopman

FAR, i.e.,

pi k, max p.K..j

The approximate solutions for large quantities of effort

for a 2-region problem are

1 i 1n [11i - 2 2 -1 Yll + Y21 P2 k2  L8B2 Y21 \ I2 (II

+ Y21 T

and t T - tI.

This model can be interpreted as a direct generalization

of the single-interval-start-at-time-zero model, i.e., a

multiple interval, start at time zero mouel.

One may interpret the case (H = 0) as a direct generali-

zation of the single-interval, random-start-time model. The

conditional detection function for this case is given by

P m(T ) = Pk i 1 P -Y I • 1 ( I - e _ Y •

m Y2 - Y"I 3Y 1  Y2

This function is pseudo-2oncave, the repion of c-onvex.•tv 's the

interval (0,T) where T is given by

Y2- Y1
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L .. . . . . . .. .

The FAR for this model is given by

pkhei = max p.

which is the FAR for the single-interval random-start-time

model. The approximate allocations for large quantities of total

effort for a 2-region problem are

.,)i ~1  1l [Y22 - Y21]+y Tt1= 711 + Y21 1 nP2 K2 2 + Ln Y21 - Yll Y2 1T

and t2 : T - tI.

5.2.2 Compariaon w•t h the Koopman Model

In this section we examine the situation in which

a partially informed searcher being aware of the results

of Koopman (which assume continuously visible targets)

applies them to situations in which the target behavior

is actually character'-zed by the multiple interval inter-

visibility process

iThe reader is referred to Section 2.2.3 for a detailed
discussion of the implications to the decision-maker
(searcher) of such an analysis.
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It is clear that, with the exception of the situation

in which R = 1, the FAR for this model could lead to the se-

lection of a different initial region than that selected

via the Koopman policy. It was also noted that obvious dif-

ferentes in switch points are possible.

Figure 13 is a composite plot of percent relative error

versus available search time and the probability of detection

under the optimal policy, versus available search time. We ,

note that the peak percent relative error occurs when, under

the optimal policy there is a large amount of available time

i.e., the probability of de ýtion is 0.86. Even at T = 200,

the relative error is still i -- rcent of the optimal return.

Figure 14 compares the allocation policies, Koopman and optimal,

utilized in obtaining the results shown in Figure 13. In

addition, the effects of variations in the prior probabilities

of target visibility on the allocation policies are shown.

Finally, by way of comparison, an example in which the target

arrives late but remains visible is included in Figure 14.

(This is a special case of the ranuum-single-interval model

of Chapter 4). Observe that the sustained error function of

Figure 13 results from the fact that the Kcopman policy allo-

cates the majority of any given level of search effort to Re-

gion 2, while the optimal solution Jets exactly the opposite

(the approximately optimal solutionIs :ire riven by'iticr l,3).

Figure 15 exhibits the probbilit-, A Jctt&'ion over a ra:.gc

of leve s of •ivailable search ti:!,e iui earh cf -mic •!icies
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i ,

described in Figure 14. The following observations are of

interest:

(a) The assumption that the visibility probabilities

are obtained from the limiting alternating renewal

process results yields little difference in the op-
timal return when compared with the assumption that

the target is initially masked. Thus the return, for

these parameter levels, is insensitive to these

assumptions.

(b) Comparing the return under the assumption that The

target is visible at the start of the search to the

return in the late-arrival situation, one notes the

rapid initial rise in the detection probability due

to the initial visibility interval. However, since

in the late arrival situation the target is always

visible, the return in this case soon overtakes that

for the multiple interval model. This indicates the

advantage of intervisibility tactics. Also note that

in comparing the late arrival situation to the mul-

tiple interval case in which the target is initially

masked, the returns agree t.,ien the total available

search effort is highly constrained. Thus in such

situations the assumptions on target behavior are

not critical.

Figure 16 compares the return (the probability of detec-

tion versus total available search time) from several alloca-

tion policies, the optimal policy, the approximate solution

(equation 43), and the Koopman policy. in the example shown

the approximate solution agrees very closely with the optimal

solution over the entire range of available search time, the

maximum error occurs in the vicinity cf the switch pcinltl.

Figure 17 gives the allocation policies associated .with ;.c-
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return functions of Figure 16. We note that the optimal policy

is not strictly increasing with increasing available search

time, while the approximate policy is. Figure 16 shows that

the maximum error in using the approximate policy occurs for

15 < T < 20, the two policies differ over the interval be-

cause the optimal policy is not strictly increasing.

Figure 18 displays the probability of detection under the

optimal and Koopman policies. Note that in this case the

peak difference occurs at a level of search effort which is

far greater than the Koopman switch point (T* = 3). The reader

will recall that for the models of Chapters 2 and 3, the use

of the Koopman policy lead to small errors for larger quanti-

ties of search time. Thus the earlier option of the decision-

maker, to expend additional effort under the Koopman policy in

order to reduce the errors in the probability of detection,

is no longer cost-effective, i.e., an inordinate amount of

additional effort would be required to achieve the desired

reduction of the error function. Figure 19, a plot of the

probdbility of detection under the optimal and Koopman ooli-

cies, illustrates the points just made for the late-arrival,

no-departure model.

From the earlier discussions of Section 5.2.2, one can

construct approximate expressions for the long term error in

using the Koopman policy in searching for an intervisible

target. The two-region search situation leads to the following

error expression

~m •
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answers to the following questions over a wide r-ange of

values of the parameters pi, ki, and 8 2i

(a) What is the sensitivity of the error function to

changes in the parameters?

(b) How much time, T, must be available to insure that

the error function is less than some specified

value, E0 ? (i.e., solve E(T) = Los for T).

5.2.3 Model Seneitiviti

In the following paragraphs, we present the results of

a sensitivity analysis with respect to the visibility

parameters for both the optimal policy and its associatec

return. We shall be utiZ ' , -I .e a r-.,r c,,i t aI c -at I ,

policies and the resulting returns Qbtained i.n Section S.2.2.

Thus, it is implicitly assumed that suff~cien: searcli time is
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available for the approximations to hold. The sensitivity

of the allocation policy to changes in the visibility para-

meters is computed from

tI Y21 T 2and t2 = •IT as follows:
Yll + Y21 2 Yll Y21

3xl atl i i l

where

at1  t I
11 "ll + 22

and

•--i=½1ayll 0. 1' k kl + a 1) 81•0.

o(1 + kl + 81)2 - 48k1 13 11

In the same fashion, one obtains

at1 at1 aYll

where

__l_ 1 1 + k I) - 4kl]

Tel (X + k1 + a )2 -48k
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One obtains for the sensitivity of tI to the visibility

parameters of region 2,

t atat1  t2__ and1 1 2 21

The relative sensitivity of the XJs and 8 's for a given
aY ii

region is readily determined .by the comparison of Oil

D il 1and n , since the other terms are constant.

Considering the example of Figure 17, we have

SoY! ay1 1
.025 and -- i= 1 ,

indicating the dominance of the rate for the masked period

at any appropriate level of total available search time. From

the symmetry of the two-region search situation, the sensiti-

vity calculations for t 2 are apparent.

The explicit computation of the partial derivatives of

the optimal return with respect to the visibility parameters

is prohibitive, e.g., one must compute

aP(T) aP(T) aYl + P(T) 12 1 etc.,1ax I B+ 1l12 1

However, the dynamic programming solution technique is utilized

to obtain some numerical approximations via difference functions.

Again, considering the example of Figure 17, we obtain the
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following results for T = 30;

_P(T). P(T) BP(T) aP(T)7ý -0.14ý, a$ 0.69, ax -0.05, and o. 0.

112

Again we note the dominance of the rate for the masked period.

A numerical study of the error function is contained

in Appendix F and is summarized below. The Koopman policy

is adequate in the following situations:

(a) a search scenario characterized by identical de-
tection rates and identical visibility param-
eters.

(b) whenever the mean time-to-detect is much less than
the mean length of the visible periods.

On the other hand, in the search situations characterized

by heterogeneous visibility conditions, the resultant approx-

imate rates (Yi 's) may differ significantly from the detection

rates used in the Koopman policy, resulting in error func-

tions which continue to increase far beyond the Koopman expec-

ted time to detect. Recall that (a) and (b) also held in the

General Single Interval Model of Section 4.2, when one used

the limiting probabilities of an alternating renewal process

as the probabilities of target visibility at the start of the

search. In contrast, the Koopman policy was not adequate for

the single interval model with random starting times in Cases

(a) and (b).
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6.3 Minimiaation of the Expeoted Time Until Deteotion

5.3.1 Nodel Solution

As was noted in Section 5.2, the forms of the detection

functions for the examples therein ranged from pseudo-concave

to concave depending upon the choice of the initial state

probabilities for the masked and visible states. Regardless

of the form of the detection function one has, for this model,

the result that the limiting value of the probability of

detection is unity. If the detection function is concave,

Dobbie's (1963) results imply that the policy dhich maximizes

the probability of detection for all levels of effort is also

the policy which minimizes the expected time until detection,

under unlimited available search time. On the other hand,

if the initial state probabilities are such that the detection

function is pseudo-concave, the results described in [4.3.1)

are employed to solve the expected time problem.

Computationally then, one first utilizes the criteria of

Section 5.2 to determine the form of the detection function.

If it is pseudo-concave, Steps 1-3 of the procedure given in

L4.3.1 ] are followed; if concave, the output from the dynamic

programming solution to the constrained time problem is taken

as the input to the numerical integration routine in order to

determine the minimum expected time.
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5.3.2 Comparison with the Standard Mod*Z

Again we determine the effectiveness of the Koopman

allocation in this situation by generating the value of the

probability of detection under the Koopman policy and carrying

out the required numerical integrations. The approximate

solutions discussed in Section 5.2 may also be utilized, as

was the Koopman policy, in generating the expected time un-

til detection in order to compare this result with the actual

minimum. Figure 20 illustrates these points (See also Fig-

ures 13-19) and compares the multiple interval models with a

late-arrival, no-departure version of the random interval

models of Chapter 4. Note that, for the parameters of Figure

20, the assumptions that the prior probabilities on target

visibility are the limiting results of an alternating renewal

process, and that the target is masked at the start of the

search, lead to essentially the same value for the expected

time until detection. Hence the appropriateness of the Koop-

man policy is unaffected, in this case, by the difference in

the prior probabilities on the target's visibility status at

the start of the search. Figure 21 shows the sensitivity of

the Koopman policy to variations in the detection rates.

Since the visibility parameters A and 8 are not identical

over the regions of interest, one is not assured that under

identical detection rates (of the order of the visibility

rates) the Koopman policy will yield good results for the

h. _ _.. . . .. . . ..
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expected time problem. Appendix F contains the maximum

errors and their times of occurrence for the parameters of

Figure 21, as well as other combinations of visibility j
parameters.

-J
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. I.1.3

Ratio of the Expected Times Until Detection

k .1 1.

.1 108 38.2

.77.2 18.8

The expected time until detection under the opti-
mal policy for

p 8

G.667 1. .1

0.333 1. 1.

Figure 21 The Sensitivity of the Expected Time Until
Detection to the Detection Rates



Chapter 6

SUMMARY, CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

In this chapter the important results for each of

the search models presented in Chapters 2-5 are summarized

and several areas for future research introduced. The re-

sults are presented in the order in which the models were j
described. The areas for future research are then pre-

sented.

6.1 Summary and ConoZueione

6.1.1 The Binary Vietbitity Model

In the study of the Binary Visibility model of Chap-

ter 2, the concept of the First Allocation Rule (FAR) was

introduced and the FAR for this model was shown to differ

from that of the classical Koopman results, i.e., the use

of the Koopman FAR could laad to incorrect selection of the

initial region to be searched. It was noted that the switch

points in the 2-region search situation may differ from

those of the classical search problem in either a positive

or negative direction. In a situation in which the visi-

bility probabilities are identical across the N-regions

(not necessarily equal to one), the optimal solutions are

identical to those obtained from classical search theory

in which the target is assumed to be continuously visible.

In comparing the optimal policies, Binary versus Koopman,

-187-
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it was observed that the long-term allocation rates are

identical. Thus the errors, when one uses the classical

results in this situation, are maximized in situations

in which the visibility conditions are heterogeneous and

Sthe available search effort is highly constrained. Hence,

a searcher may compensate for a lack of knowledge of the

visibility parameters at the cost of increasing the amount

of effort allocated to the search.

Sensitivity analyses indicated that the optimal poZici

is robust with respect to changes in the visibility param-

eters whenever the detection rates are large. Sensitivity

of the optimal policy to changes in the visibility param-

eters is independent of the level of available search effort.

Explicit expressions are provided for the optimal

policies in the discrete detection and visibility process

situation and it is shown that when one equates the in-

finitesimal detection and visibility probabilities to their

discrete counterparts, the optimal allocations are approxi-

mately equal.

In considering the problem of minimizing the expected

time until detection, one is forced to restrict attention

to the conditional version of this problem, since the ulti-

mate probability of detection is less than unity. Although

there are many situations in which the use of the Koopman

policy is approximately optimal in maximizing the

I
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probability of detection, it may be inefficient when used t

in the expected time problem in a search situation in

which the target is not continuously visible.

6.1.2 Random Int.eval of Vioibility:

In this case the First Allocation Rule is identical

to the classical results; however, the switch point for

this model is always less than that of the classical search

situation, i.e., or:: always begins to allocate some effort

to the second region at a lower level of total available

search time. Viewing this model as representing a search

for a target which has its own detection capabilities, it

is shown that wherever the searcher and target have identi-

cal regional capabilities (not necessarily equal), and the

state of maximum prior uncertainty on the target position

exists, the Koopman or classical policy is optimal. Hence,

if the searcher is willing to make this assumption, or has

data to verify these conditions, he may proceed as though

he were searching for a continuously visible target.

Furthermore, the assumption of maximum uncertainty in the

prior location was later shown in specific numerical

examples not to be critical. These results are valid for

the N-region search situation.
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In comparing optimal policies and returns, classical

versus the Random Interval, it was noted that the peak

relative error may occur at a level of search time approx-

imately equal to the expected time to detect the target

(denoted KET) under the optimal policy in situations in

which the target is continuously visible. In such situa-

tions, one may expect relative errors of 10 and 5 percent

at levels of search effort equal to two and three times

the KET, respectively. Thus the searchers option of in-

creasing the search time to offset a lack of knowledge of

the visibility parameters may (depending on the acceptable

error) no longer be cost-effective. These situations can

occur whenever the visibility conditions are regionally

heterogeneous.

The use of the classical policies in the problem of

minimizing the conditional expected time until detection

can lead to large errors even though the classical policy

is approximately optimal in the problem of maximizing the

probability of detection. It was observed in this context

that, if the target's detection rates are greater than

those of the searcher, it is important that the searcher

obtain estimates of these in order to conduct an effective

search.

Sensitivity analyses indicated that, in contrast to

the results for the Binary model, the sensitivity of the
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optimal poliy to variations in the visibility parameters

increases with increasing available search effort; how-

ever, the regional change as a percentage of the total

allocation to that region remains constant. The sansitiv-

ity of the optimtal allocation in the first region to varia-

tions in the visibility parameters of the second region is

proportional to the current level of search effort in the

second region. It was noted that the limiting sensitivity,

as T * -, of the optimal return to variations in the vis-

ibility parameters of a given region is proportional to

the ultimate probability of detection in the region, where

the constant of proportionality is the conditional mean

time until detection in that region (conditioned on detec-

tion occurring).

The situation in which the detection and visibility

processes are discrete was modeled and the optimal policies

explicitly obtained. The optimal policies for the discrete

and continuous detection models are shown to be approxi-

mately equal whenever the infinitesimal detection and

visibility probabilities are approximately equal to their

discrete analogs.
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6.1.3 Random IntervaZ of Visibility: Random
Initiation and Limit

Application of the classical FAR in this situation
could lead (in many cases) to the erroneous selection of

the initial region to be searched. rhe model gave rise u
to pseudo-concave conditional detection functions, thus

presenting the first "practical" examples of this more

general class of detection functions. *he optimal alloca-

tion policies resulting from such models have the proper:%

that they are not strictly non-decreasing with increasing

total available search effort. Such policies have not pre-

viously appeared in the open literature on search and re-

connaissance. Furthermore, in the case of identical re-

gions it is shown that one doesn't start the allocation ..

procedure by dividing the effort equally among the identi-

cal regions. The nature of these optimal policies implies

that in the random-interval, random-start time model, one

must have a minimum level of available time (which can be

numerically determined from the process parameters) before

beginning to search a new region. In the event that level

of total available search time is insufficient in this re-

spect, the optimal policy is to continue placing all the

effort in one region rather than a small quantity in a new

region. Recall that in this model that target is not vis-

ible (or present) at the time the searcher arrives in the
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appropriate region, but is to become visible (or arrive)

after some random length of time. Hence the return from

placing small additional amounts of effort into a region

in which one has been searching is greater than that ob-

tained from allocating the same amount to a second, pre-

viously unsearched region, provided the total available

search time is less than the sum of the minimum levels of

search time for each of the two regions.

The pseudo-concave character of the conditional de-

tection functions precludes the derivation of explicit

expressions for the optimal policies. However, approxi-

mate policies are developed and the requisite conditions

for their applicability discussed. It is shown that these

policies are determined from the lesser of the two rates

associated with the regional visibility processes--the

first being the rate associated with the length of the

masked period (a); the second, the conditional detection

rate (X + k) conditioned on detection occurring in the

visibility interval. One can easily determine the con-

ditions under which the classical optimal allocation poli-

cies will coincide with the approximate policies, or will

greatly differ from them. Such observations are directly

a•Dlicable to N-region search situations. Thus, in con-

trdst to the models of Chapters 2 and 3, it is shown that
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, (a) the use of the Koopman policy will not be ade-

quate in situations in which the visibility con-

ditions are homogeneous across the regions of

interest,

(b) the error function is not reduced by ir ising

the available search time to some real: level,

(c) the maximum errors do not occur in situations in
which the total available search time is highly

constrained, and
-7

(d) the availability of extremely good detectors
(high rates) will not imply that the Koopman

(or classical) policy yields small errors.

These results suggest that the searcher, in general, must

obtain accurate estimates of the visibility parameters in

order to conduct an effective search.

The model was shown to specialize to a late-arrival,

no-departure model (by choosing X = 0) and all of the
.4

analyses are directly applicable. It, in turn, was shown

to be a special case of what was termed the General Single

Interval model. This model has detection functions rang-

ing from concave to pseudo-concave depending upon the

levels of the a priori probabilities of initial target

visibility, H. The approximate policies just discussed

were shown to be applicable here also.

Numerical studies comparing the classical and optimal

search policies indicated that the classical policy, while

not necessarily optima]., could be used effectively for the

w
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General Random Interval model in situations in which (a)

the mean time required to detect the target is much less

than the mean length of the visible period or (b) the de-

tection and visibility rates are identical across regions.

Sensitivity analyses indicated that the sensitivity

of the optimal policy to changes in the visibility process

parameters increases with increasing total. available search

effort; however, the change as a percent of the total al-

location remains constant. The sensitivity of the optimal

allocation for the first region to changes in the visibil-

ity parameters of the second region is directly proportional

to the current level of search effort within that region.

Ona can, of course, directly determine the effects of these

changes in the visibility parameters upon the optimal re-

turn. For example, increasing in the rate of the masking

period causes ar increase in the optimal return. Also,

as one might exp.'ct, this effect diminishes to zero as the

total available search time increases. On the other hand,

the sensitivity cf the optimal return to changes 5n the

visibility rate increases with increasing available search

time to an asymptotic value which is identical to that

obtained for the previous model.

The situation in which the detection and visibility

processes are discrete is modeled. The solution techniques

utilized in the p,'ovious chapters were again applicable;

however, the nature of the resulting detection functions

-mom
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precluded the derivation of explicit expressions for the

optimal allocation policies. Accordingly, numerical

techniques were used. All of the extensions and special

cases associated with the continuous detection models were

shown to be valid in this situation.

6.1.4 JuZtipZe Intervals of Visibilitiy

In this model the First Allocation Rule (FAR can
.4

differ from the classical FAR, Thus, the use of the latter

in this situation could lead to erroneous selection of

regions to be searched. The conditional detection func-

tions range from concave to pseudo-concave depending upon

the levels of H, the prior probability on target visibility

at the start of the search. For example, the assumption

that the R's are the limiting probabilities of an alternat-

ing renewal process leads to a concave donditional detec-

tion function.

The nature of the conditional detection fur:ctions for

this model, conditioned on the target presence, preclude

the derivation of explicit expressions for the optimal al-

location policies. The pseudo-concave conditional detec-

tion functions give rise to optimal allclýation policies

which require minimum levels of search time before a new

region is searched (as did the model of Chapter 4, which

is, of course, a special case of this model). Approximate

I
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solutions were derived from an analysis of the regional

composite detection rates, which are functions of the

visibility and detection parameters.

From these studies it is easy to determine the con-

ditions under which the approximate allocation policy

(which is accurate for large quantities of search effort)

will be close to the classical allocation policies, as

well as those for which the opposite conclusion holds.

Thus, the classical or Koopman policy was shown (both

numerically and analytically) to be adequate whenever (a)

the search scenario is characterized by identical regional

detection rates and idenzical regional visibility param-
eters, or (b) whenever the mean time until detection is

much less than the mean length of the visibility periods. 1

By choosing H to be either zero or one, direct gen-

eralizations of the models of Chapters 2 and 3 are ob- 4
tained. For example, for R equal to unity, one obtains a

multiple-interval-start-at-time-zero model, while the

opposite situation yields a multiple-interval, random-

start-time model.

Sensitivity analyses indicate that the sensitivity

of the optimal allocation in a given region to changes in

iThese results hold under the assumption that the n's are
The lmiting probabilities of an associated alternating
renewal process.



-198- i
the visibility parameters is proportional to the amount

of --ffrt allocated to the region containing the visibility

par.,-iter, the conr,tants of proportionality are given by I

the rates of chanLge of the composite process rate with re-

spect to the visibility parameters. These constants can be

compared readily to determine the relative influence of the

various viaibility parameters. :
It was also shown that the probability of detection

tends toward unity with increasing search effort. The

other models did not have this property, with the exception ,

of the late-arrival, no departure model of Chapter 4. In

light of these results, one may study the expected time

problem without introducing the conditioning devise re-

quired for the other models. Numerical results indicate

that, while the classical policy is adequate in many cases, j
for the problem of maximizing the probability of detection,

it may not be efficient when minimizing the expected time 1
until detection.

Finally, some general observations on our models are

as follows. It was observed that (with a single exception),

under the restrictions of

(a) a uniform distribution on target location, I
(b) unifo:.m regional detection capabilities,

(c) uniform visibility parameters, and

(d) levels of search time equal to twice the KEI; j

!I



the Koopman or classical policieG are approximately op-

timal in maximizing the probability of detection under a

constraint on the total available sdarch time. The ex-

ception occurs with the model of Chaptur 4. Thus, the

classical policies are applicable to a number of situations

in which their applicability was not apparent. On the

other hand, the inadequacy of the classical policies was

demonstrated when one or more of the above resttictions is

violated.

For each of the situations analyzed, it was assumed

that the visibility and detection processes had very speci-

fic forms. The insights developed and summarized above

were based on the use of these forms. However, the model

structures are not restricted to these special forms, and

accordingly, the optimal policies and returns can be

readily obtained, via numerical techniques (e.g., dynamic

programming), for any detection and visibility pro-

cesses.

6.2 Areas of Future Researoh

In this section, several areas for future research are

discussed. We briefly introduce each area and suggest

some avenues of approach.
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(1) Enrichments of the multiole interval model

We shall consider three directions of extension for

this model;

(1) the target has a detection capability, i.e.,

if the target detects the searcher first, he

exits;

(2) the number of transitions to the masked or

visible state is controlled by an external

random process, and

(3) the introduction of various levels of visibility.

We shall explore only the first direction.

One could consider two cases:

(1) the target can detect only while it is in the

"visible" state,

(2) the target can detect the searcher in either

state.

This situation gives a complete spectrum of visibility

models, since, loosely speaking, it is equivalent to al-

lowing a finite number of visibility intervals. The model

of Chapter 5 allows for an infinite number and the models

of Chapters 3 and 4 treat the single interval cexse. Note

that the ultimate probability of detection in these situa-

tions is less than unity.

Let the visibility process of the target (within a

region) be modeled as an alternating renewal process, the

steady state probabilities of which give the probabilities
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of the target being visible. First, we assume that the

target's detection gear is working only while in the

visible state (e.g., passive air search for a submarine).

If the searcher enters the region and finds the target in

the visible state, then the length of time the target spends

in the visible state is a random variable given by the

smaller of either:

(a) the forward recurrence time of the visibility
period, or

(b) length of time required for the target to detect

the searcher.

It might be assumed that the searcher has another chance

at the target in case (a), while in case (b) the target has

escaped.

Let the transition matrix for the model be given by

(V) (I) (D) (E)
o0 R~t) D~t) H~t)

Q(T) F M(t) 0 0 0

0 0 1 0

where the states are

V, visible;

I, masked;

D, target detected; and

E, target escaped.



-202-

Expressions for the distribution functions may be derived

as in Chapter 5. Having obtained the transition matrix,

onn need only apply the procedures of Chapter 5 to obtain

the conditional detection functions.

(2) Avalanche search model

In this model the searcher knows that a climber is

lost in an avalanche or a storm somewhere on a mountain.

The length of time that he may be expected to survive is

a random variable dependent upon his precise location.

The objective is to assign a limited amount of search of-

fort in such a way as to maximize the probability that he "4
will be found alive. -

There are several other analogies of this model, the

most obvious being the stricken submarine, e.g., the

Thresher incident. Another interesting analogue is in

the area of medical screening for a terminal disease. One

is interested in the sequence, and quantity of treatment

which maximizes the probability of survival.

A description of this problem may be obtained by

starting with the general formulation of the model for a

single interval of visibility starting at time zero, i.e., 2

thfor the j region,

T1

P(T P (T)Hf(!)d• , (45)

'I
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where P(T) is density function for the time until detec-

tion, R(v) is complementary cumulative distribution func-

tion on the length of the visible period, and p, is the

probability that the target is in the jth region. Equa-

tion 45 is appropriate if the j th region is searched first.

Next, assume it has been determined that region K is next

in sequence. It shall also be assumed that in going from

"region j to K, one incurs a switching time tiK. The prob-

ability of detection is this region, assuming one allocates

T2 units of time, is given by

T

PD(T 2 ) PK J PK(-OHK(T+TI+tjK)dT (46)
0

where PK reflects the fact that the previous search of

region j was unsuccessful. Conceptually, this process

could be continued for successive numbers of regions. How-

ever, even if the sequence is given, one is still faced

with the problem of determining the optimal quantities of

the total available effort to assign to each region in the

given sequence. This problem is more difficult than the

previous formulations because of the non-separability as-

pects. If one were able to explicitly solve for the optimal

allocations of a given sequence, then the substitution of
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these results into the return function for the sequence

would yield an expression which contained only the known

search parameters. Having accomplished this, one could

then test for dominance among all such return functions,

hopefully, arriving at a criteria (in terms of the known

parameters of the problem), which would enable the a

priori determination of the optimal sequence.

This ambitious program was attempted for a 2-region

search situation, with exponential distributions on the

detection and visibility phenomena, with little success. *a

The reason for the lack of success was the failure to ob-

tain explicit -:pressions for the optimal allocations

under a given sequence. However, this brief exercise did

produce some interesting results and conjectures. In cer-

tain cases one places all the effort in the first region

regardless of the total amount available, while in others,

there is an upper bound on the amount of effort placed in

the initial region. It was also noted that the First Al-

location Rule will determine the proper order for very

small quantities of total available search effort. Finally,

the research suggests the following conjecture: "-'or the

N-region problem with piki = pjkj, j # i, the optimal se-

quence is obtained from the ranking as to increasing ex-

pected lengths of the respective visibility periods."
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(3) Random search times

One might consider either of the following random

search time situations: First, the case in which the

total available effort is a ra1hdom variable with known
distribution; second, the situation in which the searcher

spends a random amount of time in each region. The former

situation could arise in context of an aerial search in

which unknown or changing weather conditions randomly in-

fluence the total search time. An approach to this situa-

tion might be to formulate it as a stochastic programming

problem of either the 2-stage or chance-constraint variety

depending upon the particular situation. One approach to

the second problem might be to solve it, assuming the

search times to be fixed. Then use these optimal values

as nominal values with some known, possibly regionally de-

pendent, variation to compute the expected probability of

detection. Or as an approximation to this, one could com-

pute the partial derivatives (evaluated at the niminal

levels) of the return function with respect to the optimal

allocations. These scenarios become especially interesting

in view of the allocation policies for the models of Chap-

ters 4 and 5, since models gave rise to situations in which

the optimal policy has the property that the amount of ef-

fort put in a given region is not monotone non-decreasing

as a function of the total available search effort (e.g.,

see Figure 4, Chapter 4).
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(4) Target motion

The process of target transitions from one region to

another might be realistically modeled as a semi-Markov

process with the distribution of transition times depending

upon the current state and the next state. Such a model

seems to be appropriate in the sense that a commander can

choose both the next region and the transit speed to that L
region at random thus generating the semi-Mapkov transi-

tion matrix. In actual transit situations this appears to

be a more reasonable model than, say, Brownian motion. In

addition to the motion consideration, target intervisibil-

ity could occur due to changes in velocity. In this same Li
context, tracking states (i.e., entrances to and exits

from) are also of interest. With the introduction of such

states, some new search objective functioxis might be of

interest, e.g., the maximization of the probability that

the time spent in the tracked state is greater than some

specified level.

I



Appendix A

METHODOLOGY

A.1 Purpose

The intent of this appendix is to develop in detail

the solution methodology for the two major search objectives:

(a) maximizing the probability of detection under a

constraint on the available effort, and

(b) minimizing the expected time until detection.

First, we shall present a modified version of the Charnes-

Cooper Algorithm for the discrete search space version of

Koopman's problem. This algorithm is used in solving

the approximations to many of the models presented in Chap-

ters 2-5. The discrete detection version of the Koopman prob-

lem is then discussed and related to the continuous detec-

tion analog. The technique presented will be useful in analyz-

ing the discrete versions of many of the visibility models. 1

Finally, we look at minimizing the expected time until detec-

tion for both the continuous and discrete cases.

A.2 The Allocation of Search Effort to Maximize the Proba-

bility of Detection

A.2.1 Continuous Detectora

In this section we modify the Charnes-Cooper (1958)

AIE,1,thm for solving the discrute search spdce problem.

'See Appendix B for discrete detector formulations and

results.

-207-
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The target of Koopman's problem is located in one of N

regions with prior probability vector P z (PlP2,...,pN)

and the searcher has detection rates for each of these re-

gions given by the vector X( (kl, k2, ...2 kn). The basic

optimization problem becomes

imax pi ( e - 1) , e

Si~l

t i ., 0 . •

The Charnes and Cooper algorithm for the above problem has --

the restriction that the ki = k for each region, which can

be easily removed. The application of the Kuhn-Tucker conditions

to the above problem will yield the optimal solution. Then

the conditions are necessary and sufficient in this problem

since we have a concave objective function. Reformulating

the problem as a minimization one: -"

Ne-kit i) _k1 -kti
max Pi(I - e min Pie

etl n

Scaling the allocations by T;

- 4
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t.

i, and Ti ,
il1

one obtains as the problem

N -Tk.~
min p e 11T

E: 1

N

S.T. Ti Z 1

1-1i Ti >_0•

Form the Lagrangian

N N N

W(,, -:pi e -i 2:Wjj E
jx1 j:1 j:1

Application of the Kuhn-Tucker conditions to the above equation

yields

-Tk.T.
Tkjpje = * - wi it w Tj > 3

-Tk.T.
Tkjpje -= , i.e., for Tj > 0, then w. 0 I

From these equaticns one obtains that

Tkjpj = - wj when T = 0 , W.> 0

-Tk.T.
Tkjpje J J : when T . > 0 .

' ) |
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Taking logarithms, we have

inT + lnk + lnpj •_ 1nJ (I)

inT + lnkj - Tkjcj + lnpj ln*, T, > 0 . (2)

Dividing (2) by k., one obtains

inT Ink lnp i
kT .ý T >.q..a:~ r 0. (3)

SJJJ J

Let the set J be the set of indices of those regions which

receive a positive allocation of search effort, i.e., note

that

and
N

j:l jeJ

Summing equation 3 over all j e J,

l n T + T- I n k +_ l- . n p . - i n,
in kr 1, 2

jcJ ? jcJ 3 )CJ jej jcj

or

1 ( 1 Ink lnp.
in inT + + T) (4)

jf.J 3

I i
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Denote lnx by x and note that Tk jr > 0 for c £ J. Then,

using (1) and (4)

A % A k P

T +ks + pS- 1. + IZ+ -T

< T + k Pr

where S t J and r e J

Substitution uf (4) Into (2) yields

i - A + k1 - + - T (6)

"TJ j

Now, if the members of the set J were known, the solutions

are given by (6). Toward this end we modify a lemma by Charnes

and Cooper.

From (5) we have

jcJ J T)

tinr >p +( k" + (7)

SA A

> max PS + k
ScJ

Replace pj + k. by 8j. The resultant lemma is

) )
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1LiLemm: if A• T , ,1[

then 
M+u

M -1 M1

Proof: By hypothesis

Si~~l1 + •m~l i~li B' '
•i: i+ l j" W •-"i

M TJ
11

Om+l > m+l I R-7 "
F1= -+ i=l
jai1

Q.E.D.

To apply these results, to our minimization problem

(a) Arrange the ialuez. . 8. p. + k. in decreasing
order, and relabel reaions according to this order.

(b) If Pl+klkl( kI . , region i is

selected. ,k

(c) If + k l Tstop.
f 2i
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Otherwise region 2 is selected and one continues via the

lemma until the set J is determined.

The results for the two-region model follow directly.

We shall assume that plkl > P2 k 2 . First, we determine under

what conditions all the search effort is placed in region I.

From the algorithm for the selection of indices for the set

J, one stops at region 1 if

In( k < (kIn(plkl) T

leading 
to

* ,i(plk,\p-2
T < - in (8)

Then for total search time T < T*, one spends the entire time

searching region 1 . For T > T*, one obtains, using (6),

the optimal allocations to the two regions as

t1 :k 1+ k2 [inP2- ) + k(2T

and (9)

t ~1 [In tý)+kt 2  ( i pl Ik)

We observe that for large T, one has

k T kiT2 kT
t t21 k 2 k1 +k2
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The optimal value for the probability of detection is then

given by
k I\ klk 2 T

k 2 k1 k 2 T]

P(T i " __ -1i2 " ]

To handle the N-region case, one merely follows t:he procedure

outlined in the proof of the algorithm

U,•

A.2.8 Dieorete Detectors

Recall the following definition given in Chapter 1,

InnrPmepntA! Netetion: Let 1 - q be the inste.nt.aneous pro..

bability of detection on any scan of a region. Given

m such scans, the conditional probability of detection is

P(m) = 1 - qm . .

Let P = (Pil P2 ' -.. , p14) be the prior probabilities on target

location. Then .he N-region search problem may be stated as

Ie

---- --- lr-~- r
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I
N

max E pi(l - qi )
Jul

(10)

N

S.T. E mi .. M

jul
mi > 0 , integers.

This formulation may be solved usi'g Dynamic Programming,

(or the results of Chew (1967)), however, some results

(Wagner, 1969) enable one to take a more direct approach.

These results are summarized in the following theorem.

Wagner't Theorem

Let e and c be real-valued functiors (of two variables)

defined on

((x,j)Ia < x < b, t(x) 5 j S_ u(x), j an integer).

Let 0 be the set of all integer-valued functions f on

(a,b) such that I(x) 5 f(x) S u(x) for a < x < b for

which
b

< E(f) = f e(x,f(x))dx < -

a

b

-• < C(f) f f c(x,f(x))dx < -

a

Suppose that g z f has the following property: there

exists a X > 0 such that for all x E (a,b) and integers
j
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I

e(xJ) - e(x,j-l) 1 X[c(x,j) - c(x,j-1).

whenever g(x) < J S u(x), and-

e~xj) - e(x,j-l) > X1c(x,i) - c(x,j-))]

whenever t(x) J j - 1 < g(x) , then

E(g) = max {E(f)If c f and CM ) C(g))

C(g) = min (C(f)If c * and E(f) > E(g)} •

Application of the theorem to (10) gives the following

necessary conditions on the solution:

(a) for the ith region

: 1 i (i11).

nu. log X3mi log qi 17_

1

where the bracket implies the largest integer therein,

(b) The objective is to choose a X > 0, such that (a) ..

is satisfied for all i for which m. > 0, and
N -

inmi : ..
M i :=

One does this iteratively by assuming a A, checking (b),

etc.

1'
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In the two-region situation, one has for the optimal

allocations

Min log ql +log q2 [M-2) log q2 +lo8(§.2l4q2 )]+ I

(12)
1_____ 1p 1 (l-ql) ]

o-2) log ql, +oog=_
"lo2g q1 + l.q2

Next, we shall use these results to answer some ques-

tions about the limiting values of the mi. In the limit as

M * •, from (11) one has that

= lee A(13)m i a l -0 q i "

For the two-region situation, this results in the following

allocations

(log q 2 ) M
mi log q 1 +-log q2

and (14)

(log q,) M
2 log ql +-log q 2

If one assumes

(a) kiLt 1 -qi

(b) q* 1-,

I,
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then the optimal allocations for the discrete and continuous j
detectors are approximately equal. This agrees with Pollock's

(1960) observations on the discrete detection problem. In

general, one might make good use of the continuous analog in

order to obtain an initial solution for the discrete neces-

sary conditions, even in the N-region case.

A.3 Ninimiaation of the Expeoted Time Until Deteotion

A.3.2 Continuoue Deteotore

o'
Here we consider the other classic objective function,

the minimization of the expected time until detection with

no constraint on the available search time. Dobbie (1963)

has shown that a concave conditional detection function is

sufficient to guarantee that the policy which maximizes the -.

probability of detection for each value of T, the available

search time, is also the policy which minimizes the expected

time until detection. Certainly, the conditional detection

function obtained from the "law of random search" satisfies

the above condition. We shall use this result to obtain an

expression for the minimum expected time until detection.

The optimal value of the probability of detection for

a two-region search situation, given T, is

4

""-I
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P(T) a(T) pl

and

dp , a ki. tj(T) dt(T M

where, from the previous section, the ti(T) are given by *1
(assuming region 1 is selected first)

( T T T*

tl(T) I
2T_ k2T T > T*T

The minimal expected search time will then be given by

E = ]T (1 - P(T))dT,

00T,

Carrying out the above integration, one obtains for the mini-

mal expected time to detect

E f (I - I . . .

I0Iarigotteaoeitgain n ban o h ii
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f (1 ~-ekiT*\ Pk\ 1

E +J

E(14)
.1 2

k,)(kl+k) -T1~
•1 + 22+pT•

where T* is given by (8).

For the situation in which the infinitesimal detection proba-

bilities are identical, i.e., Pl kl P2 k2 , the above expres-

sion simplifies to

kl + k

L 1 2

A.3.2 Disorete Deteoore

Here we need only recall the important results of

Black (1965). He shows that the policy with the minimum

expected cost is generated by the rule" "Always look in the

region for which the posterior probability (given the failure

of earlier looks) of finding the object divided by the cost (time)

is maximum."

A.4 First AZZocation RuZe

This section considers the following question: For the

N-region, discrete search space situation, how does one de-

termine the order in which the regions receive search effort

as the amount of total available search time increases?

As the amount of available search time is
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increased one can begin to place the additional effort in

regions which have yet to receive any effort. In the pre-

vious section, it was noted that this rule, which we shall

designate as the Firet Alooation Rule was determined by

choosing as the initial region that region i for which

Pik i max pjk.

l<_ <N

The First Allocation Rule for the general case

N

max E piPi(ti)
izl

N

S.T. • ti< T
i=1

t >O 0

can be established as follows. First, we observe that if

T = e << 1, then it is important to allocate T to that region

for which the rate of return is maximized,

P.'(T) s max P.'(T)
l<_jCN I

Thus we can determine the initial region. Suppose next that
one has T sufficiently large to warrant the search of an

additional region. Once again the goal is the maximization

of.,the return from that additional effort, hence one chooses
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S..- Pi'(c) -,max Pk'(c) ,
kP

where J C (ilt 1 > 0). If the conditional detection funotion

has the property that P'(O) > 0, then one can lot C * 0 0

in the above rules; if P'(0) 0, then one merely chooses

c << I and applies the rules as stated. We remark that this

technique does not enable one to determine the value of T

at which the next region begins to receive effort, but merely

* •the ordering of the regions.

2'

!4

iL

------------------------------------------------------------------------- LJ



Appendix B

DISCRETE DETECTION AND VISIBILITY PROCESSES

B.1 Introduotion

This appendix contains the formulations and results for

the discrete analogues of the models of Chapters 2-4 re-

spectively, Explicit expressions for the optimal allocation

policies are developed for each of the models.

B.2 The Binary ModeI

If the searcher is utilizing a discrete (glimpse) de-

tection device, two versions of the Binary model may be

considered. FirQt assume that upon the entry of the

searcher the tar&et holds his current visibility status

throughout the search. In this situation, the problem of

maximizing tte probability of detection is given by

N

max PiviU(l - qi i)

(1)

N
S.T. mi < M

i~l

where M and mi are positive integers and 1 - qi is the

glimpse detection probability in the i th regi.on. The second

situation occurs under the assumption that the target's

visibility statut changes with each glimpse. The problem

-223-
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of maximizing the probability of detection is stated as

max PillI - qv m

i-i

(2)

S.T. m < M, m• " 0.

These discrete detection models can be solved in a variety

of ways. In order to directly compare the discrete and con-

tinuous detector models, we shall present the solution

given in Appendix A. First, under the assumptions leading

to (1), the optimal allocations (for the two-region problem)

are

i: ln q 2 (M-2) + ln PlV2(1-q21l in q, + In q2 2(-l

and

M nqlM2)+:nP 1 /p(1-q 1)Nq2 n in q (M-2) + in qp
2

2
2 (lq 21q21.

As M a- , one has

(In q 2 )M

1l"n ql + lnq 2

and (in q,)M (3)

M2 = n ql + I n q 2

Under the assumptions leading to (2), the anal.ogous policies

are



-225-

Mn mn 2 in +2 fM P2 (1q) + 2 P1 2

and

m2 M -MIS

As M * •, we have

in v 2 q 2

1 = in v2 q 2 + in vlq1

and (4)
in vlq1

m2 = in vlql + in v 2 q 2

If one assumes that kiat = 1 - qi, where 4t is the "glimpse"

time, then as qi 1 1, one has from (3) that the optimal

allocations for the continuous and discrete cases are

approximately equal.

FLially, note that the results of Chew (1967) given in

Chapter 1 are directly applicable here. Namely, "to maxi-

mize the probability of finding the object in a fixed num-

ber of searches, choose those n-searches for which the pos

terior probability (given the failure of earlier looks) of

finding the object is "iargest." We calcualte these proba-

bilities using the operator 6, i.e., if • = (PL.".pN) then

In each of the above expressions for m., one must choose
the largest integer in the right hand kide of the appro-
pr'iate expression.
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(8 1 P) is the posterior probability that the target is in

the j h region given the failure of the past search in re-

Zion i. For the model giwvtn by (1),

Pqivipi

2.z j

( l -qilpivi •i
(0i ) =P (S)

p.iL
. 1- ( -qi)pivi

The model given by (2) yields the following expressions

"(1 - (i - qi)vi)p
(I U qi)viPi 6pi j- (1 - qi)viP. .

Clearly, as vi - 1 for all i, both relate to the model

first studied by Pollock (1960).

B.3 A Random Interval Proceas: Target Initially Visible

Let 0 < h5 <1 denote the probability that the target is

visible on a glimpse in the jth region. It is a.tsumed that

the target is visible at the start of the search. Given that

the target is visible at the start of the search, and that

the target is present in the 1th region, the conditional

thprobability of detecting it, at or before the m look, is

given by
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P (m) h + ijhj '+q-... +

where = (1 - qj) the glimpse probability of detection

in the jth region, and

P (m) 1(1 - (hjq)) .1 hjqj

Of course as h - 1, this yields Pollock's (1960) model.

The problem of maximizing the probability of detection, given

a total of M glimpses, is

MAX Pi qih)l - (hiqi) 1 )

•miM ,.

j:l1

where mi are non-negative intelers.

Again the results of Appendix A are applicable. We

replace

pi by Pihiqi and qi by1 - qihi

in equation 12, Section A.2 to obtain (in the two-region

case) the optimal allocations
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m1  in (hq) + In (h- 2 In (h 2 q 2 )

and i

M2  m -M

As M .", (8) yields

M in (h 2 q2 )
in (hlqA) + in 'h 2q2 )

and (9)

N In (hlql)
i2 n (hlq1 ) + in (h 2 q 2 )

Setting up the correspondence kAt = - q and Xbt 1 - h,

where At is the "glimpse" time, one can obtain the corres-

ponding allocation policy for continuous detectors under

the assumption that k and A < 1. The continuous policy

may be useful in obtaining initial estimates for the discrete

policy via the above corres.;pondence.

--

- 4
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8.E Random Interval Prooe*e: Random Ingmtatir.: and Limit

* Making use of the discrete model just obtained, we

observe, given that the target becomes present at the jth

glimpse, that the probability of detection in m - j + 1

identical glimpses is given by

P(m iJ) z hi + h 2 ;q + -'" + q-hmiJ+lqm'i

" h(1 - (h,)m-j+l
~~ = hq

where

=1 - q = glimpse pzrbability of detection,

h = probability target remains visible.

Let A denote the probability that the target appears on any

glimpse, then the probability that the target becomes visible

on the ith glimpse is P(i) = A(I - A)i-l. The probability

of detection in m glimpses is

m mPm £ h• I (hq)m- )A(l -A)i'

P(m) = P(mli)P(i) = (1- hq)
i:l il (0)

(10)
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hLi
If A 1, p(m) 1 (hq)I), which is the previous j
model. Carrying out the summation in (10)

P~m) [L~A .) s
SP.:m ) Z C, -( - .., e ,,m -Q AM

The discrete, N-region optimization problem is

N h.q - m- mmax Pi hiAiqi 1 U( Ai) hiqi(hiq._(i) (1 - i)
Shiqi A i (hiqi - (1 -A

N

S.T. mi< M

m. >_ 0, integers

We make the following observations concerning P(m):

(a) lrn P(m) C IŽ~ ((l - hq)j~ the model of B. 2

(b) lirn P(m) , the limiting result for the model of
8.2.

(c) lim P(M) ={ - qm) , standard discrete detector model of --
h.I- Pollock (1960)

(d) lir P(m) 1- 1i --- A) + (I - A) - 1
h-l- (q -q

a late arrival, rno departure model.
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The results of Wagner, given in Appendix A are again

applicable to equation 1l; however, just as in the continuous
U analog of this model, the solution techniques are consid-

erably more difficult. The following conditions leud to

limiting allocation policies similar to those already

obtained:

(a) M >> 1, and Ai p 1- vi, then the limiting
allocations for two regions are

1 = n~h2q 2 J +'ln [hlqn

and (12)

2 ln~~q~l+ inLhlq1J-

(b) M >> 1, and A. < 1, 1 we obtain for the two-
region case 1

l = n M "nAl A n
an ln~l - A2J+ intl A A1 J

and I
which simplifies to

A2 M AiM
1 =1 TI 2 and m2  A l + A2

To set up the correspondence to the continuous model, let

(] denotes the largest integer therein.

---- i-
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k•th , (3 - q)

oAt ,W (A).

1:
.A A

where At is the "glimpse" time, then as h * 1, q * ', and

A -0 +, the continuous detection policy approximates the

discrete policy.
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Appendix C

CONTINUOUS SEARCH SPACE FORMULATIONS

C.I Int'odeotion

In this appendix we present the continuous search space

formulations for the models of Chapters 2-4. We restrict

S-our attention to continuous detection models throughout our

discussions. The models are derived in the next sections in

the order in which they are introduced in the text. Solution

techniques are investigated in the final section.

C.2 Model Development

In order to present the continuous search space version

of the Binary visibility model, we introduce the following

notation. Let

p(x) be the probability density function Pn target
location, defined on a region A;

v(x)dx denote the probability that a target in
(x, X + dx) is visible; and

O(x) denote the search intensity function, defined
as the amount of search effort (time) allocated
to an interval (x, x + dx).

The conditional probability of detecting (conditioned on

the target being visible and present) a target at x with

effort of intensity O(x) is denoted by P(x, O(x)). Using

the above definitions, the problem of maximizing the proba-

bility of detection over a continuous search space is

-233-
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EI p!

max v(x)p(x)P(x,*(x))dx (1)

A

S.T. J *(x) dx T

A 1
"and

*(x) >0. 0

The continuous search space version of the random

interval (initially visible) model is

max f p(x)M(X,O(x))

A

(2)

S.T. J(x)dx < T

A

OWx ý: 0 ,.

where

( x)

M(x,$(x)) J P(x,T)FT(x,¶)dT conditional probability
0

of detecting a target in the interval

(x,x - dx), conditioned on the target being

present,
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- probability that the length of the visibility
period at x is greater than or equal to T.

P(XT)dT -probability that the time until detection at
x is in the interval (T, T * dT), given

that the target is continuously visible at
x up to T + dT.

The random interval ( .'andom initiation and limit)

model in the continuous search space situation is

max fp(x) f(x•)M(x,(x) - U) dpdx

A 0(3 (3)

S.T. f W(x)dx < T

AI¢(1W > 0,

where

f(x,p)d= probability that a target at x becomes
visible in the interval (jU+dp).

M(XO(x)-P) - p(X,'r-p)R[(X,T-p)dT, in the no-
tation of the previous paragraph.
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C.3 Solution Toohniqule

As noted in the literature review Zahl (1963) gave neces-

sary and sufficient conditions for a general version of the

search problem, i.e.,

d

max F(O) f f(x,W(x))dx .- j

S.T. G($) g(x,O(x))dx = T

C

and

a(x) < <•(x < b(x).

His major result is the following theorem:

Theorem

A necessary and sufficient condition that a function

7(.) maximize F(#()), under the above restrictions, is

that there exist a constant A such that for almost every

x, 3(x) maximizes

f(x,ý) - Ag[x,f] over a(x) < *(x)< b(x)
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The correspondence to our work is

f(x,*(x)) Z p(x)M(x,4(x)) ,

where p(x) is theprobability density function on target lo-

cation and M(x,#(x)) is the conditional detection function

which results from one of our models. The function g(x,o(x))

becomes, in our case, just O(x). Hence we are concerned with

finding a constant A and a function 7(x) which maximizes

p(x)M(x,O(x)) - X)

Thus we shall be interested in finding the solution to the

functional equation

p(x)MO (x,o(x)) - 0 (4)

In general, one cannot expect to be able to solve (4) for

O(x) as a function of A. However, in the situation in which

M(x,O(x)) satisfies the conditions of deGuenin (1961), then

the existence of an inverse function for MO(x )(X,(X)), is

guaranteed, i.e.,

O) (x) Z()

Now we proceed es follows

(a) Choose A1 > 0, which determines a subset A 4 [c,d]

such that

O(x) > 0 for x c A

1 See Chapter 1 for a comr;lctc description of these conditions
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(b) then form

f *(x)dx = T
A

(c) If.
T T, *(x) is optimal

T > T, X2 > A1 and go to step a

T < T, choose X < X and go to step a .1

We investigate the applicability of de Guenin's con-

ditions to the models just developed. First, for the

Binary model, one has the following optimization problem.

max /~x'¢x)[•(x)t

max JfP(X'(X)[ p(xT)d dx
R

S.T. fo(x)dx T

R

*(x) > 0

¢(x)
Since v(x) > 0 for all x, if P(x, O(x)) p(x,r)dT

satisfies de Guenin's conditions, then certainly v (x)P(x,*(x))

will also. For the model of Chapter 3, the problem

statement is given by

max fp(x) [(x,¶)fI(xT)dl dx
R
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S.T. f (x)dx T

R

(x) > 0.

Now conditions (1), (2), and (4) (See Chapter 1) certainly

hold; if one assumes that P(x,o(x)) satisfies the conditions

of de Guenin, condition (3) follows. For the model of

Chapter 4, we have

max P(x,o(x))= p(x f(xj)R V
P(x,9)ARxT)d] d dx

S.T. J$(x)dx 0 T
R

OWx) > 0

Here an analysis of the second partial derivative of P(x,O(x))

with respect to O(x) yields the result that dP(xt#(x))/dt(x)

is not a decreasing function of *. Hence the required

inverse function does not exist. For the models of Chapter

S, one cannot make a general statement; however, several of

the examples therein violate Condition (3) uilder certain

conditions.
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In the event the conditions of de Guenin fail to hold, -

one proceeds as follows:

(a) Choose a x and solve [4] for **(x, ) and
#**(x,X) which are the smallest and largest solu-

tions of [4] i r a given x and x, respectively;

thus determining A* and A**.

(b) Next, compute

f *(x,A)dx = T* , and f 5*(x,X)dx T** ,

A* A**

if the current X, say AO, is the greatest lower

bound on the set X for which

T* < T < T**,

then let

O*(x, 0, x <. t

#t(X,;ko0) =

€**(x,xO) x > t .

by the continuity of the integral there exists a

t such that

d

J (X,Xo)dx = T .="

C

Ii

I
I
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Otherwise change A, and return to step a 1

Note that in a discrete search space situition, one may

have determined a *t(xXO) which satisfies (4] but for which

ot (XA0o) A T. Hence in this case the condition of Zahl
x

is sufficient but not necessary
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Appendix D

RANDOM INTERVAL MODELS WITH FINITE VISIBLE PERIODS -*

D. I Introtikton

This appendix deals with some random interval models

with the characteristic that the range of the random varn.

able which denotes the length of the visible period is

finite. 1  Some examples are given, their particular proper-

ties examined, and finally, a comparison with the Koopman

results is made.

I

D.8 Random Interval of Viiibility: Initially VieibZe

First, it is assumed that the probability density func-

tion on the length of the visibility period is given by

(e )~At

h(t) t "
0 , t > T

-XTwhere C I - e U.

Applying the results of Chapter 3, we obtain for the con-

ditional detection function

If one interprets the length of tne visible period as the
length of time the target spends in the regions to be
searchcd, such distributiui|s more accurately reflect the
search situation.

-242-
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P(T) eA; e(1 -e QT )] T e

P(T) (UTu), for T > Tu. (1)

Note that if Tu -o -, one obtains the model of Chanter 2; if,

in addition, A -0, one has the Koopman model.

The First Allocation Rule is readily shown to be

piki max pjkj

The conditional detection function is concave over the in-

terval (OTu), however, the resulting Kuhn-Tucker, con-

ditions don't yield explicit solutions for T. A study of the

switching criteria gives the following expression for the

switch point (in the 2-region case assuming the search start-

ed in Region 1)

T-k- In. In(A -. A 1 T T < T~ (2)

An upper limit on the switch time obtained from the above

expression is given by

1 {PikS -A I T
mninfT -4-~ . + e~~T 1

Next. vr A"s'ae that the probability density function on

the lenrF-h of the visibility period is uniformi.e.,

_ _ _ _
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h(t) {
0 t > S"'

Applying the results of Chapter 3, one obtains for the con-

L
ditional detection function

-kT TeT r-l
P(T) - T - - e-kT] T S (3)

SP(T - I- e-T + S kSL

P(T) =P(S) for T >S

Note that as S * *, i.e., the target is always visible, one

obtains the Koopman model. The First Allocation Rule is

identical to the one already given. Again, the conditional ,.

detection function is concave on (0,S) and the resulting Kuhn-

Tucker conditions fail to yield explicit solutions for T. A

study of the switching criteria gives the following expression

for the switch point (in the two-region case assuming the

search started in Region 1)

11 14)_ i n _ - In 1 - <_ T <S

Since the term

1 rTl
g0 ,

, [ ,1
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"the solution of the above expression, when it exists, is

always larger than the "Koopman Switch Time." Also under

conditions P IkI p 2, the Koopman policy splits the effort,

but from (4)

TT =- ln• (

Assuming the search started in Region 1, this implies that

once a region is chosen it receives all the effort up to

Ts, the solution to (4).

As noted earlier the Kuhn-Tucker conditions don't

yield explicit solutions for the optimal allocations; how-

ever, one can gain some insight into certain properties of

this model by making the following assumptions. In a two-

region situation, it is assumed that in the first region the

target is always visible,(i.e., Koopman model), while in the

second region the length of the visible period is uniformly

distributed on tiN i interval (0,S 2 ). Let T denote the total

available search time. Then the expression for the amount

of effort to be allocated to Region 1 is given by



! LI
[U

T (In " Pe-- + k T . (1 _(T -T-) ()

INote that

(a) (T - T S2 , i.e., one never saturates the

second region, and
(T - Tl1 U

(b) since -In - a2 0 the first region

always receives more effort in this mixed situation

(more relative to the KSA).

D.3 A Random rnt.r'Z• of Vi•ibility: Rando,, Intiation Limi.t "

In this section the following assumptions are made:

(1) The random variable corresponding to the start of

the visible period is exponentially distributed,

(2) The length of the visibility period is uniformly

distributed with parameter S, and

(3) The detection function is exponential.

From the second example of Section D.2 (assuming the visibility

period starts at u and is of length S) the conditional de-

"teftion function is

M(T - w) = (I- e- + (T÷ ek- 1(-Ie)

for T- wj S, and M(T- u) =M(S) for (T- w) > S.
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In Chapter 4, the general "pression for the probability of

detection for this type of visibility model was given by

t
P (t) f f(p)M(t - )M ,

0

the chauge of variable T - - P, yields

t
P (t) f f(t - T)M(T)dr

0

M(T) M(S), for T > S, and for T $S

M'T) (1 - -kT ) + e - (1 - e )kT

Because of the form of M(T), in evaluating P (t) one specifies

whether t > S, or not. Furthermore, special consideration

must be given the situation in which k 8. The density func-

tion on the start time is, of course,

f(t) = 8 e-at, t > 0 .

Under the above restrictions, one obtains the following

expressions for P (t).

First for t S1

(a) k • B



r 2 8t

-Bttr

+ (•) -te -__ __ (1- e- (k-- )t

(b) k B,

P(t) ( - -) (i- e-t) - tae t) + 2S e-at (7)8t
k-S

Note that by assuming S - •, the late arrival cases diE-

cussed in Chapter 4 are obtained. Also if 8 * a, part (a)

tends to the model in Section D.2. For T > S, the respec-

tive expressions are

(a) k

1~t e- (t-S) e• 1 e-t-(k..)

p~~t) = (I -Sr)-e ( - e- - ( -)S k - 8 1

+ g e- -) + (k-(k-8)S (8)
+ (k - B + )2 ( - e

+(i e-O(t-S) )(l1 - -kS
kS i-e )
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IL (b) k- 8

U p(t) (1 rg) (e- (t-S) - t (1-O -ts
(9)

L + � 8e- t + (I - e-8-))(i- 1 (1 - ekS))

4- As t * % a limiting value of P (t) is attained which is

equivalent to that obtained in Section D.2, namely
4.

- 1 e-kS
"-•(l-e )

The First Allocation Rules for these models are identical

to those given in Chapter 4, i.e., choose as the initial

region

piki m. a j

These functions have the pseudo-concave properties discussed

in Chapter 4. Explicit expressions for the optimal allocations

cannot be obtained from the Kuhn-Tucker conditions. However,

some insight can be gained from the following special case.

First, assuming that sufficient total search time is available

to insure that either equation 8 or 9 is valid, we obv;erve

that the aerivatives with respect to time of these expressions

are of the form
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SP'(T) =8e et{.} ,(11)1

where (

(.} is a constant with respect to time. The significance of

this is that the methods given in Appendix A are applicable

and explicit representations of the optimal I
allocations for the N-region search problem are available.

Also, from the approximation discussions of ChapteLs C and 4,

the Koopman allocation scheme will be effective for the

case k = 8, while for k 9 B such may not be true.

The final special case results from the following assump-

tions. First, consider a two-region case in which k,

while in the second region, the target is continuously visible,

i.e., the standard Koopman situation. Given this scenario

with the restriction that T < Sl, the optimal allocation to

the first region is determined from

2 (12)3
1 i 1

I?

+ + I (S (T =- 0
i2
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The above expression contains the standard Koopman allocation

plus an extra term. Analysis of this term yields the follow-

ing information.

(a) the expression f(t) = (t - T) has its maximum

at t = S, that maximum is OSf2.

(b) Assuming that TI as determined from equation 12 is

not on the boundary i.ee, T1 0 0 or T1 0 Si, then

(1) if f(S) = OS/2 < 1, the optimal allocation is

less than the Koopman scheme

(2) if f(T 1 ) > 1, then the reverse is true. I

ii
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COMPUTER ý'ROGRAMS

E-1 Description and Listing of the Dynamio Programming

Computer Program

In this section we shall briefly describe the pro-

grams utilized in obtaining the numerical results of the

main text and Appendix F. This will be followed by a --

listing of the FORTRAN level G source statements for the

program. First we simply note that the dynamic program

for the solution of the problem of maximizing the prob-

ability of detection under a constraint on the total avail-

able search time uses the standard dynamic programming

approach to the constrained maximization problems for each

of the models discussed in the text. (See Bellman and

Dreyfus (1962)). A glossary of variables unique to our

models is given below:

GLOSSARY: Dynamic Programming Source Frogram

1. Binary Model (MTYPE = 1)

P(I) = prior probability on target
location 1 < I < 50.

PV(I) = prior probaLil'ty on target

visibility in the ith regio-n,

1 ý. 1 I
-252-

_ _ _ _ _ _ -
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R(I) the detection rate for the Ith

region

2. Random Interval Model; Initial Visibil-

ity (MTYPE z 2)

PV(I) the rate for the length of the

visible period in the Ith region

R(I) the detection rate for the Ith

region

3. Random Interval Model: Random Initia-
tion and Limit (Unifornt Distribution on

Start Times) (MTYPE 3)

PV(I) (See MTYPE 2)

i•(I) " "

S(I) the length of the uniform interval

on the start of the visible period
in region I.

4. Random Interval Model: Random Initiation

and Limit (Exponential Start Times) (MTYPE

34)

PV(I) = (See MTYPE = 2)

R(I) = of

$(I) = the rate for distribution of start-

in& times for the Ith region.

5. Gpneral Random Interval Model (MTYPE 5)

PV(I) (See MTYPE 4)

R(I)

S(I) = "
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PHI() = prior probability on target vis-
ibility at the start of the I
6ea:::h in region I.

6. Multiple Interval Model (MTYPE 6)

PV(I) (See MTYPE 5)

R(I)

- ~~S(I) " "

PHII)-

7. hiscellaneous

NAREA = the number of areas to be

searched

DELTA = incremental value of search

time (effort) used in the

dynamic programming solution

of the search problem

TMAX = the total available

search time (effort)

PSAVE(I,J) = an intermediate storage array

used in the dynamic program-

ming computations

I S I S 500
I < J< 2

PSAVE(I,l) the optimal return

PSAVE(I,2) the optimal allocation

(These results oi't printed for each region in

this order as they are obtained.)
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This program contains a subroutine called DPROB which com-

putes the probability of detection (for any of our models)

for a given region with a specified level of search time.

The pertinent variables (which were not previously defined)

are listed below.

KK t that region for which the probability of de-

tection is to be evaluated (1 < KK < 50)

TAL = the level of search time for which the prob-

ability of detection is to be evaluated.

RESULT = the detection probability for region KK when

TAL units of search time are allocated to
that region.

I
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C MAIN PROGRAMU
c MODEL I/PVII)*PROR. TGT. Vise
C MODEL 2 / PV(I)mRATE EXP P.D.F. FOR LENGTH VIS% PERIOD
C mnODL 3 / PV(I)u RATE o o 0 'It a
c MODEL 4 / S(I)wRATE FOR EXP START TIMES L
C MODEL S / PH.I(l)upRna. TCT. VIS. COMAINED SINCýLE INT. MOI)EL
C MfltEL 6 MULTIPLE INTERVAL

C R(I)-RHfluDETECTInN RATE
C PV(I)uLAM9DAwVIS, P*DF.
C S(I)*MIJ*MASK P.nCE.

DIMENSION P(5fl),PV(50),Rf50),PMAX(5009?),PSAVE(500,2)
19S(50) ,PHI (50)

1 READ( 2,1000) MTYPE,NAREA,)EI-TATMAX
WR I TE ( 391002)
WRITE(f3,1000) MTYPE,NARFA,D)ELTA,TMAX
CO TO 42929292,292,AO)*MTYPE-
SnO 5 I=l*NAREA

5 READ(.2,1001 ) P( I) ,PV( I )R( I )S( I) .PHI.(I)
DO 6 I=1,NAREA

A WRITE(391001) P(I )9PV(I)#R(I),S(I)qPHI4(1)
C INITIALIZE REGIONAL DlETECTION PRORAKILITY SUJRRUITINE

CALL nPRoRL(MTYPE,NAREA,P,PV,R,S,PHI)
NCHKt-ITMAX/DELTA)+.5
IF (NCHKGT.500) Go TO 100

C ZERO STARTING VALUES OF OR].i FCN. AND cnRRs. ALLOC.
NZ ERO=NCHK.1
On 7 J=192

7 PtMAX(1,j)=n.
C SET REGIONAL COUNTFR

K' = 1
C INITIALIZE TOTAL AVAILARLE SEARCH TIME

10 7Nnw=n.
C S FT rURkFNT MAXIMUM

15 RETA=-l.E-05
C INI TIAL17iE CUJRRFNT VALiSE OF SEARCH TI ME

TK=O.
2n INnExc=((TNnW-TK)/OELTA),o.5+1

C ORTAIN DEFTFCTION PROR FOR CURRENT ALLOC.
CALL nppng(K,TK,GT)
I F (GT. LT. 0.) (,T zo.
ALPHA=nT+PMAX(INDFXCv1)

C TFST FOR NFW MAXIMU1M
IF(AIPHALTRETA) 60 TO 3nl
RE TA:ALPHA
GAMMA= TK

.30 TK=TK+OEFLTA
IF (TK.CTTNnw) CO TO 40
COn To 20
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C SAVENEW MX- ý CORRES. ALLOCATION40 INDEXS-(TNr)w/oELTAý+,O 54PSAV~fINnEXS,1 )ftIETA
PSAVE( INOEXS92)uGAMMA
mnwoW t'Nflw+rELTA

IF: (Th0W.arT.rTqAp GO TO S0
GOl Tn i sc PRINT RESULTS FOR THIS ReGiON

50 WRITE(3,IM0) K
NPR IN IONCHK4-1
nn sl 11IPNtPRINT

c51 WRITE13,1 003 ) PSAVE(Ij,j, ,PSAVE(Ij,2)C TRANSFER P9EVi~iiS RESOLTS
nnl 55 J-1.2
00) 55 1Z1,NPRINT

55 PMAXUIvJI.PSAVE( I.j)

C TESýT FOR MORF REGIONS
IF (K*(T.NARFA) rm ro) I
r0r TO I (

C ERRnR RFTURNS
100 WRITE(3,10 0 4 )
60 CAtI EXIT

1000 FnRMA Tf2I2,6X,3Fbos.)1001 FnRMATCSFln
5 1)

1007 FO ATIH1,1-
1003 FAR MA T( IOnx, F 1 .5,i 5X * FI )o, 5~1004 Fr)RMAT(IH195Xp F RROR JIN MODfEL SPECIFICATIONS

SEfRIMMTINE Pnl(TPfRAPPSHj
01ESO ((),V5) RT(50) PJS(0,R 5) t½

REA NURRT CALC,. OFT. PROA./ AN ALLOr. OF TIMF(rAL)
fon 5 lml.NARFA
PL (I =P f JI

SPHI (1 )=PHi) f

£~RhTFCI)=Rt
1 )RE6 TURN

FNTRY f)PR0Fg fKKTALRE*SlLT)IF(T'AI-.rr.n) rO Tr) 7RFSIIL 7=n.
REF TORN

7 CO TO ),n;n4.?)~)#TPc MODEL I AINARY INTERVISJR!LITY



C MODEL 2 SINGLE INTERVALtSTART AT TIME YERO
20 RES(ILTuPL(KK)*(RATE(KK'I/(RATE(KKI+PVIS(KK)))

IF (MTYPFE0EO3) GO TO 30

RESUL~aRESULT*(1.-EXP(-IRATE(KK),PVIS(KKO)*TAL) i
IF(MTYPE*EQ.5) GO TO 50
RE TURN

C mODEL 3 SINGLE INTERVAL UNIFORM START TIME
C SR(KK) DENOTES LENGTH OF UNIFORM INT. ON START lIME

30 IF (TALNE.0.) GO Tnl 31
RESUI7=Oe
R E TURtN

31 IF(TAL.GT.SR(KK)) GO, TO 310 .
TEMP=1.-EXPI-(RATF(KK)+PVIS(KK))*TAL)

TFMP=7EMP/(RATE(KK)+PVIS(KK))I
RESOL TURESIILT*( TAL-TEMP) ISR KK.)I

310 TEMPEEXP(-(RATEIKK).PVIS(KK) )*TAL)
TEMP=FXP(-(RATE(KK)+PVIS(KK) )*(TA1-SRfKK) ))-TFMP
TEMPwSR(KK)-TEMP/(RATE(KK).PVISIKK))
R E SUL 7aR F S UL T * T EM P/ SR ( KK
R F.TURN I

r MODEL 4 SINGLE INT. EXP START TIME

C PV(J)=RATE FOR VIS. OIST
C RATH(I )=RATE FOR cnND. DETECT. FtlNrT.
C SR(I)mRATF FOR START VIS. PFRIOD

40 OFN*SR(KK )-RATE(KK)-PVIS(KK)
N(JMl1-RATE(KK)+PVTS(KK)
IF(A8S(OEN).LT.1,E-4) GO TO 410
RESUILT 'cRK)FP-NIITL-IM*EP-QK)TL
RE5UIL1aPL.KK)*RATF(KK)*(1.-REStILT/nFN)/NIJMI
IF:(MTYPFE0,5) GO TO 52
R F TURN 4

410 TEMPzFXP(-SR(KK)*TAL)*(I..eSR(KK)*TAI)
RESUILT=PL(KK)*RATE(KK)*(l.-TFMP)/NIIMI
IF(MTVPF.F0,5) GD TO 52
R F TORN

C MnDEL 5 cOMgCJ. ZERO) !NON-ZF-Rn START TIMFS
50 SAVFI=RFSI;LT

nnl Tn 40
5? R FSUIL TcSPH I(KK*S AVFI +( I. -SPH I(KK) *R E 111.T

R E TO R N
c M(Ir)FL 6 Mil.TIPILE INTIERVAI
C SOLVF FOR ROOTS

AO A=SRfKK )+PVJS(KK)+RATF(KK)
C..SR (KK )*RATF KK)

P1 SC=R*R-4.*A*C
ITFf(r)ISC . LT. 0, r~ TO10 I n
RnnT2=(R.S0RT(OISC())/(?.*A)
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Rofl7).(A-SORTtflISC))/(?%*A)
nRnnTuRflfT2-RnnT 1

c cnmptiTF ARisnRPTinN PRnii
C -------- T2

TEMPla(1,-EXP(-TAL*RO)OTI ))/RnOTI
TFMP2u(l.-EXP(-TAL*F&00T2) )/ROOnT2
tEMPUSR(IKK )*RATE tKK)*f TEMP 1-TEMP? )/DRnOT

C ----- P1317)
SA veuRA TE(KK)*SR(IKK )-ROOTI) *TEMP 1/DR DOT
SAVEuSAVE-1SRIKK)-ROPT2)*TEMP2*RATE(KK)/DROOT

C COMPU)TE STATE PRnR,
R&ES(JLTwTEMP*( 1.-SPHI(KK))
RESULTzRESULTSAVE*SPMJ (KK)
RESUL ToPL (KK )*RE SILT
RE TURN

100 RESIILTz-20o
RE TURN
FNn
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9.8 Deeorption and List•ng of the Computer Program for
the Comparieon of the Optimat Searoh Poi1ay with the
Aecoatated Xoopman PotioyZ¼

Here the program used in the determination of Section

F.4 of Appendix F is briefly described. This is followed

by a listing of the FORTRAN level G source statements for

this program. The approach taken may be summarized as fol-

lows:

1. The dynamic programming routine described in Sec-
tion E.1 is used to generate the optimal search
policy, region by region.

2. When the results for the last region have been

attained, one then computes the allocations under

the Koopman policy.1

3. The difference in the re-urn from the two policies

is then computed as well as the percent relative

error for each level of search time up to the maxi-
mum specified level.

Since this program makes use of the one just described, we ""

shall list iA. the following glossary only those variables

which were not previously dcfinedj

1 Here we are restricted to two regions; however, this re-
striction can easily be removed by extending the Koorrman
calculations to 14-regions via the techniques described in
Appendix A.
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GLOSSARY:

LPRNT Flags used to control the printing of
IBACK the difference curve, i.e.,

IBACK
:0 0

peak peak up
only to Tmax

LPRNT

0 ~up to complete

the peak curve

ITEST = Flag to indicate that the computation is

to be continued until the percent relative

error is less than PERROR

PERROR = Limiting value of the percent relative error

Output Description

(a) Field 1 = optimal return

Field 2 = return under the Koopmnan policy

Field 3 = difference (1-2)

Field 4 = allocation to region 1 under the Koopmanpolicy

Field 5 = allocation to region 2 under the Koopman
policy

Field 6 = total available search time
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(b) If IBACK 0 or ITEST 0,
Field 1 = difference in the optimal return

(optimal-Koopman) -

Field 2 = total available search time

Field 3 percent relative error at the peak dif-
ference

Field 4 = optimal return (probability of detection)

Field 5 = Koopman expected time until detectiono-

Field 6 = Koopman switch time.

ie

I

I
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hi',-C.AlL- TKnnP( Pi L)9 2)vR I RU 2) sSAVES)
NH=TMAX/DELTA)4.5 10

C ZERO STARTING VALUES OF OBJ, FCN. AND CORRS. ALLOC.
NZERnuNCHK+1 4
nn 7 J=192
m) 7 Iw1,NZERO

7 PMAX(I,J)uO.
r SET REGIONAL COUJNTER

KIl
C INITIALIZE TOTAL AVAILABLE SEARCH TIME

10 IN0wo0.
C SET CURRENT MAXIMUM

15 BETA=-1.E-05
C TKOINI TI All IZ CURRENT VALUE OF SEARCH TIM Mt

IF(K.EQ.fl TK=TNOw
20 INDEXC=( (TNnW-TK)/PELTA)+0.5+1

C ORTAIN DETFCTIr1N PROR FOR CtP'cNT ALOnC.
CALL DPROR(KTK,GT)
IF (GT.LT.O.) GO TO 110
ALPHA=GT+PMAX( INO)EXC.1)

C TEST FOR NEW MAXIMU1M
IF(ALPHA.LT.BETA) GO TO 30
KE TA=ALPHA

GAMMA = TK
in TK= TK +OFL T A

IF (TK.GT.TNOw) GO TO 40
GO TO ?n

C SAVE NEW MAX, I CnRRES. ALLOCATION
40 IPJOEXS=(TNnw/OEFLTAV+.S.5l

PSAVEI INF)FXS,1 )=RFTA
PSAVE( INDEXS,2)I=CAMMA
JFfK.FO.NARFA) GO TI) 499

45 TNw = TNf)W+ EL T A
IF (TNAW.GT.TMAX) GO TO 50

rGO TO 1 I)
c ~~PRINT RFSUJLrS FOR THIS, P Er I (IN
s0 NPRIN7=NC.HK+1

IF(LPRNT.E0.O) (,O TO 5?
WR ITF ( , 100? ) K
nn 51 11=1,NPRINT

51 WRITEF1.1003) PSAVF(I1.1 ),PSAVF(Il.2)
C TRANSFFR PQFvIOIIS, RFSIRt TS -
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s?CrnN TiNti
nfl 55 J-i92
nnl 55 I =I NPRI PIT

55 PMAX(1,J)-PSAVE(h~J)
57 KaK+1
C TEST FOR MORtE Rr-G1ONS

IF(K.GT.NARFA) Gn TO s55
GO TO in

C ERROR RETUJRNS
i00 WRITE(4,1004)

GO Tfl 6o
110 WRITE ( 3,1005i)

6n CALL FXIT
c-- ----COmPIITF RESULTS FROM KOOPMAN ScHEME

IF(TNnw.GT.Z?) GO TO 5012
GOf TO (5008,5009),IFIRST

500RA 71 =TNnw
T2=0.
r.O TO 5014

5009 T2=TNnW
Tl=0.
CGf TO 5014

5012 Tl=(71.R(2)*TNflw)/(R~j).R(2))

12=(-?1+R(1)*TNflw)/(RHflRf2H)
5014 IF(MTYPF.I.T.3) Gn, TOl 100

K=1
CALL flPRfl-ffK,Tj,C,1)
K=2
CALL P)PRns(K,T2.,G?)
PROR=rI.lC,?
TEMP=PSAVE( INnFXSqi)-PRnR
IFI(ITEST.F0O0).nR.UInVER.FO.0OH C,0 TO 5007
IF(PSAVF(INn)FXSqjl.Eo.0.) GO TO 5007
TF.S7=IEmp/PSAV~fINDFXS,)I
IF(TFST.GCT.PERRnR) GI) TO 5007
FI FxrT= 1

GO TO 5013
5007 1F(finVFRF0,I).ANfl.(I$IACK.NE,0fl GO TO 5013

IF(I.PRNT.F0.0) GO TO S501
5013 WRITE(3,10Oj1 PSAVE(JNnExs,l),PROR.TEMP,Tl,T2,TNOW

IF(IFXIT.F0.1 ) (;nTO 1
SO1 IJ F( TFMp . T .n., ) O TO 500

IFE'TFMP.I.T.cAVFI ) (*, TO 51n
SAVF = TFMP
S;AVF?= TNnw
IFfPSAVF(JNnFXSv1, FcAAn) Go TO 50()
SAVFl=7FmP/PSAVF( INDFTxS.jI
SAVF4-PSAVF( INO)FXS. ii
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500 GO Tn 45
505 1F((JRACK.NE.fl).fR.ITEST.NF*.f)) cGo TO 50?

WRI TFl 11001,)
WRJTEI3,100I) SAVE1,SAVF2,SAVE3,SAVF'..SAVE5.Z2
Gn TO i

507 WR ITE(491007) PFRRnR
WRITF(3,1001) PSAVFl1NnFlXS*l),PRnR,TFMP.T1,T2,TNOW
GO TO 1

sin cfltTIN11F
YF(invFR.Ffl~l) GO TO 511
WRITE 4,10)01) S.AVF1,SAV.F?,SAVE3,SAVF4,SAVF5,Z2

511 IF((IRACKNE.O).nR.(TTFST.NF.01) rGO TO 45
GOn Tn i

1000 FnRMAT(5I2.3F10,5)

1001 FORMA7(RFlF0.'i)
100? FOnRMA T( IHI 9 11)
i003 FnRMA T(I X, Fln.5, 5X,F 10.5)
1004 FnRMAT(lHl,5X,l FRROR IN mOOEL SPKFCICATIOINS
1005 FnRMA7(IHI,5X,t FRRnR IN O)FT, PROP, SUFOR!)ITINF1
100A FORMAT(, OIFFF.RFNCF FC.N STILL INCRFASINC')
1007 FnAMAT(IPE-RCENT RELATIVF FkinR LARrFR THAN tF1o.!))

FNr)
SIIARROTIJNE flPRORI(MTYPF.NARFAPPVRS.#PHT)
nTMENSION P(50),PV(50) .RATF(50) ,PVIS(50),R(50),PL(!,0)

RFAL N1JMl
C. SIJRRT, CAIC. DFT. PROR,/ AN ALLOC. OF TIMFITAL)

o05 s =19NARFA
PlC! )=P( I)
PVI S(I )=PV(I

SPHIMIII=PHI II
'5 RATF(I)xRCI)

RF T1URN
FNTRY OPROR (KK TAI, RF SIIL T)
rO TO ( 10,?n,?0,4n,20,AOn) t4TYPF

C mOOFLI RINARY INTERVISIRTI.ITV

10 RFSIILT=PL(KK)*PVTIIýKK)*(1.-FXP(-RATF(KK)*TAL) I
R F TU RN

C ~mC)FL 2 SINGIF INTFRVAI.,STJRT AT TTMF 7FR0
7n RFS~IIL1SPlIIKK)*(RATFfKK)/fRATF(KK)4PVISIKK )I

IF (MTYPF.FO.3) GOf TOl In
RFSiIiLTRFSII fT*( l.-FXPC-IRATFIKC)+ý'VIS(I(I( I *TAI,)
IF(MTVPF.FnS) rO TO 50
RF T11RN

C mnrOFI 3 S;INtLF INTFPVAI. 11NIFORM STAPT TIP.4

r. SPCKK) nENOTFS LFNcGrH OF 1,NIFnkm INT. OiN rTtQT TIMF
30 IF IThL.NF.n.) rO TO It

PFS11L 7=0.
RF- T1URN

31 IF(TAI.C~T.%R(KK)) GO TO 310
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TFMPul,-FXP(-(RATE(KK)e.PVIS(KK))*TAL)
TFMPuTFMP/fRATF(KK).PVIS (KK))
RESIL T*RESIILT*(TAL-TEMP) /SR(KK)
R E TlRN

310 TEMPuEXPI-(RATE(KK)+PVIS(KK))*TAL)
TEMP=EXP(-(RATF(KK),PVIStKK))*(TAL-SR(KK)))-TEMP
TEMP=SR(KK)-TFMP/(RATE(KK).PVIS(KK))
RFS0L`TsRESlILT*TEMP/SR(KK)

C mOOFI 4 SINGLE TNT. FXP START TIME
C PV(T)=RATE F'I-l VIS. M1ST
C RATFf1)=RATE FOR CONN. DETFCT. FllNCTo
r SQ(1)=RATE FOR START VIS. PERIOD

40 OEN=SR (KK )-RAW (KK )-PVIS (KK)
N(IJM=RA TE(KK )+PVIS(KK)
IF(ARS(nFN).LT.1.F-4) GO TO 410
RESILT=SR(KK)*FXP(-NIIMl*TAL)-N1,M1*EXP(-SR(KK)*TAL)
RF.SIIL7=PL (KK )*RATEfKK )*(I .-RESUiLT/DEN/NlJMI
IF(MTYPF.E0.5) GO] TO 5?
R F TURN

410 TEMP=EXP(-SR(KK)*TAL)+SR(KK)*TAL*EXP(-N(IMI*TAL)
RESIII1=PI (KK )*RATE(KK )*f 1.-TFMP) /NIiMI
IF(MTYPF.,EO.5) nO TO 57

REF T1 RN
C MC)PEL 5 COMRn, ZERO F.NON-ZFRn START TIMFS

50 SAVEI=RES(ILT
nn TO 40

52 REStJLT=SPHI(KK)*SAVEI+(1.-SPHI(KK))*RFStJLT
RE TURN

C monnF A MtILTIPI.F INTERVAL
C SOLVE FOR ROOTS

AO FR=SR(KK J+PVIS(KK)+RATF(KK)
C=SR(Ki()*RATE(KK)
A=I.
)I SC=F8*F-4.*A*C
IF(nISC.LT.0.) GO TO 100
RnnT2=(9+S0RTCPIscH)/(2.*A)
RnnT1=(R-SORT(DISC))/(2.*A)
rDR nnT= R nOT?-R nrT I

C COMPIJTF ABSORPTION PROS~
C----------- P?l(T)

TEMPI=(1.-FXP(-TALAiRnnTfl)/RnnTI
IEMP2=I'l.-EXP(-TAL*ROlOT2)l/RonT2
IFMP=SR(KK)*RATF(KK)*(TEMPI-TFMP2)/flR)onT

C -------- P13(T)
.ýAVE.RATF(KK)*(S.R(KK)-RO0)T1)*TFMPt/n)RnnT
SAVE=SAVE- (SRIEKK )-RnOT2 *TFMP?*R ATF KK() /flRofT
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C cOmPluTE STATE PRORe

COPk T EET TTUTRNTC KDMN OE

SlIImIROTINE TKOOpixi X29YI9Y29ECl
Plaxl
P2=X2

R=Pl*Rl/ (P2*R2)
0= (RI +R2) /(RI*R2)
I F(R. FO.I.) I Gn Tn 15
IF(R.GT.1.) CO TO lo

C --------INTFRCI4ANGE PARAMETERS
SAVEl=Pl
SAVE2=Rl
Pl=P2
R1=R2
P2=S&VFI
R2= SAVE2

10 R=P1*RI/(P?*R2)
T=ALnOG(R )/Rl
Z= (RL+R?) /R?
FC=Z*O*FXP(-T/0)

FC*EC*PI ,P2*T
GO TC) 20

15 FC=Q
20 RETURN

END



Appendix F

NUMERICAL COMPARISON WITH THE KOOPMAN MODEL

F.1 Introduotion

In this appendix we investigate the situation in which

a partially informed searcher being aware of the earlier

results of Koopman (which assume continuously visible tar-

gets) applies them to situations in which the target be-

havior is actually characterized by one of the intervisibil-

ity processes. The consequences (in terms of the prob-

ability of detecting the target under a constraint on the

total available search effort) of this application of the

Koopman results will be compared to those obtained from

the optimal allocation procedures for these models. In

this appendix these comparisons are made from the results

of a numerical analysis, rather than the approximation

analyses of Chapters 4 and 5.

This method of comparison has a great deal of practical

significance (in addition to being a useful mathematical

device for comparing the two models). For example, one may

view each of the models under study as being composed of two

types of parameters: those which the searcher may be ex-

pected to readily obtain or generate, e.g., the prior prob-

abilities on target location, and the regional detection
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-270-
II

capabilities; and those which essentially characterize the

visibility processes, e.g., the distributions on the lengths

of the masked and visible periods. The former group may

be labeled the "searcher" parameters; the latter, the "tar-

get behavior/environmental" parameters. It is not unrea-

sonable to assume that the searcher may

(a) have imperfect knowledge of "target behavior/en-

vironmental" parameters, and

(b) not be able to obtain estimates of these param-

eters or be unaware of the fact that the target

is not continuously visible. 1

F. 2 Description of the Technique

In making a comparison such as this, the decision maker

might generate the following list of questions relative to

the appropriateness of the Koopman policy (denoted SKA) in

situations in which the target behavior is characterized by

one of the visibility processes.

(1) Under what conditions, if any, does the use of the

SKA policy lead to small errors? By small errors,

the decision maker may mean a relative error < 5%,

at the peak difference in the probability of de-

tection.

(2) Which, if any, of the following combinations of
"searcher" and "target" parameters yield small

errors?

In Secto)r. 2.2.3, we .:iscuss, coi.ceptually, tr-.e implications
of thi -inalysis in terms of th'u var-ious options open t-o tne
.-.ea.-cht- as well as the associated cost-cffectiveness ile-
-dires.
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Identical regional detection capabilitySearcher S Non-identical reiional detection capa- "
bility

(Identical regional behavior/environment
Target lNon-identical regional behavior/environ-I

ment

(3) In those situations in which the mean time to de-

tect is much less than the mean length of the

visible period, can the searcher safely assume the

SKA to be adequate?

(4) In those situations in which the SKA is shown to

be inadequate, are there any simple relationships

between the detection and target behavior param-

eters which indicate this inadequacy?

These questions apply to two situations: a short-term

search situation in which the total available search time

is less than the Koopman expected time for detection; and,

a long-term situation in which the decision maker has an

amount of time much greater than the Koopman expected time.

In order to answer any of these questions, one has to

decide on certain measures of the effectiveness of using

the SKA. As a measure of the worst case situation in using

the SKA, consider

(a) the percent relative error at the peak difference

in the probability of detection (% rel.).

However, the decision-maker also needs to know at what level

.of search,effort this peak occurs in order to judge its
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L significance relative to the total amount of search time

he has available. Thus we take as our second measure,

(b) that level of total available search time at

which the peak difference occurs (Peak Time).

The analysis of the models of Chapters 2 and 3 indi~ated

that the error resulting from the SKA could be reduced

by increasing the total available search time. Thus the

decision maker (searcher) is interested in determining

(c) the level of total available search time at
which the percent relative error is less than

some specified value.

Assuming that the searcher's strategy is to allocate

an amount of time at least equal to the expected time to de-

tect the target under the Koopman strategy, the following

results might occur: the percent relative error is moderate

but the peak time is much greater than the Koopman expected

time; or the percent relative error may be high and occur

at, or before, the Koopman expected time. Both of these

cases would appear to be significant to the decision maker.

The following measure is used to describe these situations;

(d)Peak Time (% rel.)

In a certain sense, the Koopman expected time may be used

to chara..terize the classical search situation as to the



-273-.

degree of difficulty. Thus it was chosen to normalize the

time at which the peak differences occur.

The limited analytical results for the models of Chap-

ters 4 and 5 provide "explicit" answers to the above ques-

tions in very specific cases. In particular, the approxi-

mations (valid for large quantities of search effort) yield

analytical expressions which can be studied to provide the

required answers. Situations in which the available effort

is limited to the extent that under the optimal policy all

the effort is placed in a single region will also lend them-

selves to such analysis. However, in order to study the

error function over the spectrum of search time, numerical

techniques are required. Since this type of problem is

readily solved using dynamic programming, this procedure is

used in the following numerical analysis.

Having obtained the optimal allocation policy and re-

turn for a given level of search effort, the return from

the SKA at this level of effort and the difference in the

two returns is compted. If interest centers on the peak

differences, as soon as the difference function begins to de-

crease the computation is ended. If one is interested in

determining the amount of effort reqjired to reduce the
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percent relative error below some specified value, the

computation continues until that point.1 In the peak dif-

ference situation, the nature of a dynamic programmingI solution requires that we only compute the optimal solution

for the last region until the peak is passed. A flow chart

for these computations is given in Figure F.l.

F.3 Summary of the Numerical Reeulte

The charts and tables given in this section contain

the results of a series of computer runs for each -f the

models represented in Figure F.l. Because the dimension-

ality required to describe the search and target-environ-

ment parameter space is extremely large, only the two-

region case is considered. Figure F.2 is a schematic repre-

sentation of the parameter ranges used.

A suimnary of the results for each model relative to

the questions formulated in Seczion F.2 is given. These re-

sults are identified by the ratio of prior probabilities on

target location and the values of the detection rates for

each region. Finally, a series of tables containing the

measures introduced in Uection F.2 are given.

1 The unimodality of the error function is determined via an
analysis of the approximate error functions given for each
of the models.
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(Z) Random IntervaZ/Random Initiation and Limit

Exponential distributions are assumed on thA start

time as well as on the length of the visible period and the

detection devices. The following results were obtained.

The labeling corresponds -to the respective question number

of Section F.2.

(1) The avdilability of search time on the order of

2-KET (Koopman expected time) will not reduce

the relative error below 5% in using the SKA.

(2) In those cases in which the mean time to detect

is much less than the mean length of the visibil-

ity period, large errors are obtained from the use

of SKA.

(3) For the short-term search situation,

pl/P 2 1

k,
0.1 1.0

0.1. Min % R.E. = 211 See tables

1.0 See teble 2 F.5 Mi % R.E. 19

1Over' the visibility parameter space under investigation,
none of the combinations studied led to small short-term
errors in using the Kocpman policy.

2Note, in many of these cases, thy extreme sensitivity of
the errur function measures to changes in the visibility
parameters.
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- -- --. L
pJ/P2 =2

= 20.1 1.0

0.1 See. table F.6 Min % R.E. 11

1.0 See table F.6 Mn % R.E. 16

(4) From the tables, we observe that the greatest
errors in using the SKA occur with nozi-identical
detectors and that level of total available
search effort at which they occur is, in many

cases, much greater than the Koopman expected time
(KET). The approximation analysis of Section
4.2.2 gives insight into the causes of such sus-
tained errors. Consider the followi..g ;-*-xa:lD.e:

p X k 0

2/3 .1 1. .1

1/3 1 .1 .1

From the analysis of Section 4.2.2, the long-
term approximate policies are ".82t _____

t 1 ÷2 and t 2 = 2 -

while the similar results fcr the (oopran policy

are
k2 klt

+ k2 t and t 2  + k

I1

1
,I
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Thus, under the Koopman policy region 1 doesn't

receive enough of the search effort. Also note

that if Bi 1, then the long-term policies are

identical under both methods.1 To surnmariye,

dn investigation of the relative magnitudes of

the conditional detection rate (AU + ki) and

the rate of masking interval, ýi, determines the

long-term allocation policy. When this policy

greatly differs from the Koopman policy, the

latter will be inadequate over a large range of
total available search effort.

Ta,'les F.1 and F.2 summarize the main effects due to

the various search parameters; measure (d) is used in the

tables. The following observations are of interest.

(a) For k. = k 12 = ., note the increasing sensitivity

of measure (d) to A1 and A2 with increasing prior

positional probability ratios pl/P 2.

(b) For kI = .1, and k2 = 1., note the sensitivity to

a2 and the reversal of its effect at pl/P 2 = 10.

(c) For k = I., k 2 = i, note the extreme sensitivity

of measure (d) to . If one uses the approxi-

mate solutions of Section 4.2.2, then it is ap-
parent that at the lower level of P the Koopman

and optimal policies are very different.

(d) For kI z 1. = 2, we note the increasing sensi-

tivity to '0

Which explains the senstivity to in tne tables.
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Table F.l .

Random Interval Sensitivity

k =.1 k= .I k 1=I. k 1.

P1/P2= 2 = .1 k 2 =1. k 2  .1 k=1.

.1 92.9 149.6 570.3 315.5

1. 71.3 945.8 51'5.2 291.

1. 92.9 569.9 149.7 315.5 j,
2I

1. 71.3 525.5 945.8 291.

.1 115.1 582.9 1035.5 355.5

Z1. 52.7 513. 60. 251. 1

=.1 112.5 1035.5 589.2 355.5

1. 54.6 60.2 506.3 251.

P1/P 2=2 ___

.1 63.8 103.8 1137.9 540.6P

1. 168.3 485.2 662.5 193.7

.1 167.f' 306.6 508.6 4V5. I
1. 64.3 255.4 1211.9 289.3

.1 131.5 497.2 1747.1 522.4
1. 100.6 64.8 53.A 211.Q I

.1 138.4 491.7 I 812.7 342.3 I
1. 93.7 70.3 I 98"i. 3C2

I _ _ _ _ _I _ _ _ _ I
I

L I
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Table F. 2

Random Interval Sensitivity

k = .1 kI = .1 kI = 1. ki a 1.

p 1 /p 2 -3 k2 = .1 k 2 =I. k = .1 k2 = 1.

• 49.2 91.6 1418.6 492.1
1. 195.6 431.6 1197.7 339.5

. 188.2 291.2 1143.4 390.4
1. 56.5 232.0 147 '.9 44.2

. 124.4 457.4 2566.0 639.4

1. 120.3 65.8 5C.5 191.4

. 135.2 447.8 1090.8 559.9
S =

1. 109.5 75.4 1525.7 270.9

pl/p 2 =10

.1 54.0 56.9 2620.0 1113.
1 . 218.9 80.c- 2455. 721.

.1 205.9 91.8 2454. 784.
2 . 57.0 45.3 2621. 1050.

. 107. 88.8 5035. 1710.
1 . 148.6 48.8 40. 124.

.1 1?4.2 -15.1 2368. 90
S1 R 147 102.5 2707. 854.

II

S - - •- 'vU~rmw11-•
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Table F.2 suggests the following comments:

(a) Note the insensitivity of the situation in which

kI = k2 .1 to changes in the prior probabilities

on target location, as contrasted with the approx-

imate linear effect of such changes when k1 a k 2

1. Essentially, this difference results from dif-

ferez,,'es in the peak time relative to the Koopman

expected times in the two cases. The peaks occur

early in the former case.

(b) Note the decreasing rate of change of measure (d

with increasing pl/P 2 for the conditions k, a 1.1
k2= .i.

In contrast to the models of Chapters 2 and 3, we ob-

serve that

(a) the use of the iKoopman policy will not be adequate

in cases in whicn one has homogeneous visibility

conditions,

(b) the error function is not reduced 1y increasing

the available searcn time (unless extrE..ely large

increases are made),

(c) the maximum errors do not occur in situaticnri in

which the total available search time is con-

strained. I,

(d) the availability of extremely "good" detectio:n' de-

vices will not imply that the Koopman scheme will

yield small eriors.

The above results imply that the decision makeŽr, in 3
general, must ob•i; •uLdt. •ih.&.e C, ti,. VifibiliV

paraLteteLsi in uz-d' Lo conduct ar, effective sarcn, since

paranetezI

I
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the option of increasing the available search time may no

longer be cost-effective. The sensitivity analysis of 4.2.3

will give some insight into che sensitivity of the optimal

policy and return to these estimates as well as the numerical
I

results just reviewed.

(II) -General Single Interval Model

Here the two single-interval models of Chapters 3 and 4

are combined using the limiting values for the state prob-

abilities of an associated alternating renewal process (see

Section 4.4.2, i . i ). 2 These results were obtained.

(1) rhe availability of search time on the order of

2-KET (0oopman expected time) will not, in general,

reduce the relative error below 5%, in using the

SKA. The only exception is the situation in which

pJ/P2 = 1 and k, = k 2 .

(2) In those cases in which the mean time to detect is

mucn less than the mean length of the visibility

period (e.g., kI = k 1, and X, 2 = .1), the
1 2 12ad

SKA can be used. Under these conditions the prob-

ability that the target is visible at the start

of the searcn i3 at least O.F for the levels of

o used.

All of the above observations hold for the situation in
which the start of the visibility period in the ith region
is uniformly distributed on (O,Si). Section F.4 contains

the results of a sensitivity analysi5 of this situation
(Tabl-s F-. and F.j).

2 Une coulc, uf cuuc.•e, use any prior estimate on j'i, e.g.,
one which is independent of X. and $..1 1
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(3) For the short-term search situations one has the
following results:

S~~pl/P2 =i.

0.1 1.0

0.1 Homo;eneous visibility
condi.tions yield 1ml See table 1".10

______errors

1.0 Homogeneous visi-See table F.10 bility parameters
yield small errors

=lp 2

E 20.1 11.0 4

0.1 conditions (4 See table F.11
.1) - small errors

Homogeneous vis"IbiTIT I
1.0 See table F.11 conditions with

1 2~cr 21

1Rec'all that for the model of Chapter 3, such condition~s
implied the optimnality of the Kooprnan policy.

2Here one notes that the long-term allocation policies are
identical and that the probability of the target being visi- 1
ble dt the start of the search is almost 0.5.

I
I
I,
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Table F.3 summarizes the main effects in terms of mea-

sure (d) due to the various search parameters. it suggests

the following comments.

(a) For kI - k2 = .1, note that the sensitivity to
changes in X and A increases with increasing
pl/p 2. Changes in the A's affect the prior prob-

abilities on target visibility at the start of
the search. Thus, the general model tends either

toward the model of Chapter 3 or Chap te: 4 de-

pending upon whether' 1I can affect the FAR for
the general random interval model.

(b) For k 1. and k2 = 0.1, note the extreme sen-
sitivity to ýi" This causes the general model to

tend toward that of Chapter 3 by increasing n.
The reader will recall from our earlier discussions

that the model of Cnapter 3 has primarily short-
term errors. Fromn approximation policies of Sec-

tion 4.4.2, observe that for a1 = 1, the approxi-
mate long-term allocation tends to agree with the
Koopman allocation.

To summarize, we have observed that

(a) the Kuopman policy can be used effectively in the
homogeneous detection, homogeneous visibility con-

dition situation, ana

(b) it will also prove adequate in the situations in
which the mean time to detect is much less than

the mean length of the visible period.

The values of H, the prior probability vector on target vis-

ibility at the start of the search, are of importance here.

Since for Ni - 1, the generai model reduces to the random



Ft
£

Table F.j ±
General Random Interval sensitivity

k . 1 - .1 ki1 = 1M 1 1. k

pl/p 2 1 k .. 1 k 1.. k . .1 k2 .1.

•1 55 205 443 37

1  . 51 665 427 59

.1 55 443 205 37

1. 51 427 665 59

.1 60 43"3 856 60 ""

1. 46 437 14 36

2 1 60 856 433 60

1. 46 14 437 36

p1/pn2 =2 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I

.1 35 17 618 101
1. 130 396 782 152

.I 105 210 543
1. 60 203 857 154

S1 88 295 1383 185

1. 77 118 17 68 I

.1 73 392 792 126
1. 92 21 608 127

I
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interval, initially visible model, and this model has pri-

marily short-term errors under the Koopman policy. If,

on the other hand, Rii - 0, one has the random-interval,

random-start-time model which has significant long-term

errors under the Koopman policy.

(II) M&4tipZe IntervaZ ModeZ

Here it is assumed that the visibility process is

characterized by an alternating renewal process with the

residency times being exponentially distributed. Again,

the probabilities of the target being either visible or i
masked are taken to be the limiting state probabilities of ]
the associated alternating renewal process. The following

results were obtained.

(1) The availability ol searcn time on the order of
2-KET (Kocpman expected timt) will ,;r, in genera.l.,
reduce the relative eror below 5% in using the

SKA.

(2) The SKA can be effectively used in those cases

in which the mean time to detect is much less than

the meai. length of -che visible periods.

(3) For the short-term situation, one has the following
results:
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0.1 1.0

Homogeneous visibil- t
0.1 ity conditions A See table F.12

small errors

Homogeneous visibil- 4
1.0 See table F.12 ity conditions +

small errors

Pl /P 2

Ek k2  0.1 1.01

Homogeneous visibil- S0.1 ity conditions See table F.13

small errors I
Homogeneous visibil-

.See table F.13 ity conditions with
1.0(XI A .1) +

small errors

Table F.4 summarizes the main effects in terms of mea-

sure (d) due to the various search parameters. It suggests

the following comoents.

(a) For k1  2 = 0.1, note the increasing sensitiv-

ity to x and I with increasing pl/P 2 (an increase

in p1 increases the contributicn to the optimal

return function of the first region).

(b) For kI z 1. and k2 = 0.1, rnte the increasing sen-

sitiity to changes in 1 (increas~rng 51 tends to 1
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Table F. 4

A Multiple Interval Sensitivity

k 1 =.1 k 1 =.1 k1 = 1. k1 = 1.

pl/P 2 =1 k2 = .1 k 2 =1. k2 =.1 k2 =1.

.1 51 76 153 36

1. 93 333 256 91

.1 51 153 76 35
1. 93 256 333 92

.1 91 334 348 75
1. 53 75 61 52

.1 91 348 334 7582=
1. 53 61 75 52

Pl /P2=2

.1 43 30 204 33

1 . 109 125 467 190

.1 60 28 204 69
1 . 92 127 467 154

.1 108 129 585 156
1. 44 26 86 67

.1 91 111 489 162

1. 61 44 182 61

I . . • • •, . . .• •• _ , :,•......• •• =r; ,. w:iP 7 • .%" -•--'•r • •w '
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yield long-term approximation policies which are

close to the Koopman policy).

(c) For k 2 k , note the general increase in

the sensitivity of all the visibility parameters
AI, 81, x2, and 82. 2

The SKA yields small to moderat% rors for homogeneous

detection and visibility conditions. Homogeneous visibil-

ity conditions will yield, via equation 44 of Section 5.2.1,

equal rates (yi) for use in the long-term approximate

allocations. Thus whenever the detection rates are identi-

cal, only short-term errors will occur. On the other hand,

heterogeneous visibility conditions yield heterogeneous

rates (yi) which may differ significantly from the detec-

tion rates used by the Koopman policy, resulting in error

functions which increase beyond the Koopman expected time.

Thus, in certain cases, the decision maker has the full

range of options given in Section 2.2.3. For the situation

in which the visibility conditions are homogeneous the

most cost-effective approach may well be that of increasing

the available search effort as opposed to obtaining esti-

mates of the visibility parameters. The data also indicate

the sensitivity of the error function to changes in the

visibility parameters in the heterogeneous case. Thus, an

erroneous assumption on the ncniogeneity of the visibility

conditions could lead to extrem:e errors if the searcher is
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using the Koopman saheme. The sensitivity analysis of Sec-

tion 5.2.3 and the data of Table F.4 provide insight into

the sensitivity of the optimal policy and return to varia-

tions in the estimates of the visibility parameters.

F.4 Tables

This section contains the data summarized in the pre-

ceding section. For each model the data are arranged in

order of increasing ratios of p1/P2 . The data are arranged

in the following order within each cell of the table (for a

given ratio of Pl/P2):

where

1 - maximum difference in the probability of detection,

2 - time at which the maximum difference occurs,

3 - percent relacive error at the peak difference,

4 - measure (d), defined in Section F.2.
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Appendix G

SOME RESULTS FROM THE THEORY OF SEMI-KARKOV PROCESSES

In this appendix, we list some theorems on Semi-Markov

processes due to Pyke (1961). First some definitions, let

G i(t) denote the distribution function for the first pass-

age time, i.e.,

P0j o tj x

where t. denotes the time of the first passage to state j

and N.(t) denotes the number of entries to state j in time

t. Let P ij(t) be defined as j
p ij (t) a er{Xt a JIx 0 i)

The Laplace transforms of these are, respectively,

gi. (s) I / -st dGij(t)

0Iand

i..(s) e-st dP (t)

0

The Laplace transform of Q, the associated semi-Markov matrix,

is denoted by

q (qij(s))) f eI dQij(t)

-301-
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Pyke (1961) proves the following theorems relating P and

G.

Lemma 1.0

For all t > 0,s >0 1;

P.. = j 6. - 6.. P.j(t)J*Q.K(t)

K: 1

fl. .(S) :-i 6.. I~ slqKs
K=1

Lemma 2.0

For t > 0, s > 0,

G. .j(t) G K.Ct)*Q. (i-) + [1 G. .i(t)]*Q. .(t)

K: 1

m

g. .(S) EZ. (sqjs + [1 - gjj(s))q. .(s)K:1

Theorem I1

For t > 0, s > 0,

P27Jt JJ()Gt +16 11Ji~)

and
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fl..( n =f.(S)gj.(5), i j

1 - h.(s)

where
M

Ai(t) "Qij'), hij(s) e-StdAj(t)
j= 0

Next we define the convolution on matrix-valued func-

tions as

m

(K*L)ij . Ki*L
13 iK* Kj

K:1

and

K I, K K(N-) * K, (I- K)('l E K(N).

nzO

Theorem 2

Given P = {P ij} Q = {Qij }1 H = (6ijAi. and their

L- S transforms R, q, h, then the following relationship

holds

P = (I - Q)- , (I - A), n = (I - q)-1(1 - h).

For any square matrix (or matrix valued function) A (a..),

define the diagonal and off-diagonal parts of A by
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dA (6 jAij)

0A A dA.

Theorem 3

As defined on s e (0
A

g = qH(df)-

As a result of this theorem, one can obtain the mean

recurrence times u = (ui.) from
1)&

u r - i - g]imS÷0.
S-0O

where r is an nxn matrix each entry being unity.

i
I
I

Ii
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ABSTRACT

A computer program has been developed and documented

that generates the information necessary to establish minimum

separation distances between various munition types and per-

sonnel in order to mitigate fragment hazards. This information

includes the fragment density at any point from an accidental

detonation and the probability of injury to personnel within

the hazardous area.

Published munition effectiveness data have been modified,

utilizing statistical techniques, to emphasize a conservative

approach,with respect to safety, by a better resolution of

heavier fragments. The modified munition effectiveness data,

which is input to the computer program, have been included as

a technical data appendix.

Computed results have been obtained for seven munitions

and are presented in the form of contours of constant fragment

density and damage probability in the horizontal plane surround-

ing the munition of interest. In addition, these contours have

been simplified to yield an average value of the hazard as a

function of range from the accidental explosion.
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FRAGMENTATION HAZARDS TO UNPROTECTED PERSONNEL

1. INTRODUCTION

Existing quantity-distance standards for the manufacture,

handling, and storage of munitions are based on the net weight

of explosive filler contained in the devices in an unsubdi-

vided magazine, or operating building unit. Safe distances

are prescribed in tabular form essentially proportional to

the cube root of the explosive weight.

Because peak blast pressures from explosions nf different

yield are the same at distances scaled by the cube root of

Lhe reýspective explosive weights, existing standards imply

that the acceptable risk to a given target is based on a

peak blast overpressure criterion alone. On the other hand,

the field of fragments projected to the far field from accidental

explosion of a munition store, consisting of inert munition

component fragments and secondary fragments from any enclosure,

does not satisfy the same similarity rules as does the airblast.

Thus, defining an acceptable blast overpressure level at a
target implies the acceptance of different levels of risk of

damage by fragments, depending on the quantity and composition

of the munition store and its enclosure.

To develop quantity-distance standards based on con-

sistent blast and fragment hazard levels requires determination

of the damage risk due to fragments from accidental explosions
as a function of the quantity and type of munitions, and of

the characteristics of the source environment and the vulner-

ability of the target. A previous report (Ref. 1), was a

first attempt aimed at applying engineering analysis, supple-

mentary experimental efforts, and currently available data on

fragmentation and damage criteria to the problem of estimating
fragment hazards at explosives manufacturing and storage sites.

While that report resulted in a fragment hazard model and a
set of fragment density and damage probability maps for a
variety of weapons and targets, this report is concerned with:

References listed at the end of the text.
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(1) Refining that model and making its corresponding
computer algorithm usable by personnel moderately
experienced at ballistic calculations,

(2) Revising near-field fragment mass distributions
to more accurately reflect their use as input i-
estimating fragment hazards,

(3) Developing a new set of fragment density and
damage probability maps; studying the effect
of specific personnel protection criteria for
unprotected personnel, and

(4) Developing simplified two-dimensional relation-
ships of fragment density and damage probability
as a function of range.

1.1 Problem Background

Under Contract No. DAHC-04-69-C-0056 with the U.S.
Army Research Office-Durham, IITRI has been conducting a
series of investigations concerning fragment hazards associated
with accidental detonation of munitions. This work has been
performed under the direction of the Department of Defense
Explosive Safety Board.

Phase I of this study was concerned with establishing
quantitative damage criteria in terms of fragment mass,
velocity, and attack angle for various targets including
standing personnel, vehicles, aircraft, buildings and open
weapon stores. In Phase II an analytical model was developed
to predict the density of fragments and the probabil''y of
damage to the targets considered in Phase I from explosion
of individual munitions of various types. These included
gun projectiles and general-purpose bombs. Here damage
probability contours were obtained in polar coordinates for
a horizontal orientation of the munition axis in each case.
Phase III attempted to extend the fragment hazard model for
individual munitions to the case of multiple munitions in open
stores (Ref.2). The result was a limited demonstration that
an analytic model could be developed to describe the initial
fragment field of a stack of munitions. However, it was
also brought out that this initial fragment field was often
related to munition case design, stack configuration and
mode of initiation.
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1.2 Program Objectives

In the current research activity the intent has been

to develop an analytic tool, usable by personnel moderately

experienced at ballistic calculations, and capable of generating

the information necessary to establish the minimum separation

distance to personnel. The objectives of the study were:

(1) To develop and document a computer algorithm
which uses munition effectiveness tables as
input and computes fragment densities and
damage probabilities to unprotected personnel
based upon the following criteria:

. A hazardous fragment has a kinetic energy
of 58 ft-lbs or greater, and

o An acceptable density of hazardous fragments
is nut more than one per 600 sq ft.

(2) To develop a rational scheme for revising published
munition effectiveness data to more accurately i
reflect its use as input in estimating fragment
hazard s.

(3) To develop a simplified means of relating
fragment density and damage probability to a
radial distance over a fixed sector of the
ground plane.

(4) To utilize the computer algorithm and the revised
data in order to compute the fragment density
and damage probability from the explosion of a
single round of each of the following seven
munitions:

* 500 lb low drag bomb Mark 82 Mod i (H-6 load)

e 750 lb Bomb M117A2 (Tritional Load)

e 105mm Howit..er Shell Ml (Composition B Load)

* 155mm Howitzer Shell M107 (Composition B Load)

* 175mm Gun Shell M437A2 (Composition B Load)

* 5"/38 Projectile Mark 49 (CCMP A-3 Load)

* 8"/55 Projectile Mark 25 (Explosive D Load)

_ _ _ _ _ _ _ _ _ _ _ _ __3



1.3 Program Accomplishments

The major result of this study has been the de-

velopment and documentation of a computer algorithm which

will allow safety personnel, moderately experienced at
ballistic calculations, to make the computations necessary

to establish separation distances for personnel due to
fragment hazards. A rational statistical scheme has also
been developed and demonstrated which revises published
munition effectiveness data to more con servatively reflect
its use in estimating fragment hazards. A set of computa-

tions were made for seven munitions and the results are
presented as contour maps of total fragment number densities,

damaging fragment number densities and injury probabilities.
The contour maps have also. been simplified to yield curves

of number density and injury probability as a function of
radial distance from the munition source within a constant
sector of the ground plane. (i.e., the nose, base and side-
spray sectors) These results serve both to demonstrate the
capability of the computer algorithm and also as design aids
for explosive safety personnel.

1.4 Program Highlights

The following sections of this report are organized
in such a way as to first present the analysis on which
the fragment hazard computer model is based, to next present
an analysis of the munition effectiveoess data which is input
to that computer model and to finally summarize the study
in the form of conclusions reached and recommendations as
to model improvement.

Appendices, covering the study's deliverable items,
are included following the conclusion of the report. These
appendices include a user manual for operation of the fragment
hazard computer program, a listing of the computer program,

the contours and simplified curves describing the fragment
hazard associated with unprotected personnel exposed to these

4
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I seven munitions. The revised munition effectiveness data

for the seven munitions were published as a separate classi-

1 lied document.

2. THE FRAGMENT HAZARD MODEL

This section describes the analysis which forms the
basis for the computational model for predicting fragment

I density and injury probability contours for various munitions

The mathematical model, illustrated in rig. 1, is limited to

j the consideration of the single munition without environmenta

protection. The model has been programmed for digital computa

tion, is modular and accepts as inputs:

(i) The spatial distribution of fragment masses
and velocities for single munitions, which are
defined for intervals of polar angle. (i.e.,
munition effectiveness tables)

(2) The k-factors for the individual munitions, whick
express the relationship between fragment masses
and projected areas for various munition types.

1(3) Vulnerability criteria for targets of interest.
(e.g., kinetic energy and critical densities)

Output of the model includes:

(1) Fragment density contours showing distances
to isodensity lines for all azimuths. Contours
can be printed for all fragments or for various
classes of fragments.

J (2) Injury/damage probability contours, showing
ground distances to isoprobability curves at
all azimuths for various munition/targetJ combinations.

Elements of this model include the following steps:

1(1) Munition performance data is converted to an
internal form. All data is normalized into a
a common internal form, wherein the average
fragment velocity and the average mass and
number density for each of several fragment
mass categories are represented as tabular
functions defined everywhere on the surface
of a sphere uf unit radius located at the
origin. Gaps in the original data are filled
in, and in addition the data may be smoothed
if this seems desirable.

5
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(2) A terminal fragment field is computed on a
selected horizontal plane (i.e., the plane
is above, below or passing through the
origin) utilizing routines for evaluating
fragment trajectories. The quantities
computod for each mass category are impact
velocity, impact angle and number of fragments
per sq ft in a plane normal to the impa, ngle.
These quantities are expressed as tabul
functions of range and azimuth for outp..
processing.

"(3) Selected functions of the fragment field
quantities computed in step 2 are computed and
plotted in this step. A wide range of functions
are available. The basic functions involve the
fragment field alone, and do not consider charac-
teristics of a target. Examples of these func-
tions are number of fragments per sq ft, and
total fragment kinetic energy per sq ft.

The target functions use target characteristics
to determine the number of damaging fragments
and the probability of damage at every point
in the field. These functions use tables or
formulas to determine whether or not a fragment
is damaging, by finding the minimum velocity
required by that fragment to damage the target.
The fragment is considered to be damaging if its
velocity exceeds the threshold.

(4) Fragment field functions may be plotted either on
the printer, or on an off-line plotter if the
output tape is run through an appropriate post-
processor.

2.1 Trajectory Analysis

Large quantities of terminal ballistic property data

are used in developing the outputs of the computational model

described above. These data are generated from the equations
of motion for the fragments. Since these computations represent
the bulk of the computational burden involved in exercising
the model and their accurate evaluation is essential, it is
desirable to utilize a highly efficient numerical prccedure for

calculating trajectories.

Figure 2 illustrates the motion of a fragment moving
under the influence of aerodyniamic drag and gravity forces in
nonrotating local coordinates x, y tangent and normal to the
trajectory. The corresponding equations of motion are:

l 7
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x + Ov x + g sinea (1)

y+ "v y + g cosa 0 (2)

where dots denote differentiation with respect to time t. In

j these equations, g is the acceleration of gravity, v is the

speed in the path, and -t is the angle between the x - axis

and the horizontal. Instantaneously we have x= v and y - 0.

The aerodynamic coefficient -. is given by

CDw A/2W (3)

where CD is the drag coefficient, w is the specific weight of
air, A is the cross-seccionat area of the fragment normal to
the fright a crection, and W is She fragment weight. The fragment
area and weight are related empirically (Ref. 3) through a ballis-
tic density k as follows

W = k A3 / 2  (4)

In terms of k, the aerodynamic coefficient becomes

DC w/2(k 2 W)I/3 (5)

An approximate local solution to the equations of mo-

tion is obtained by separating the displacement into two parts,
one a basic solution satisfying the local initial conditions
and the equations of motion with gravity absen't, and the other

a pair of perturbations satisfying the linearized residual
equations (Ref. 4). The results, applicable for small depar-
tures of the trajectory from the local initial tangent, are

equivalent to difference equations appropriate to an arbitrary
time step in a numerical integration of the complete trajectory.

The displacement " is assumed to be of the form

x 0 + Xp (6)

0" 9
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where the basic solution 7o satisfies

x0  O~x -O0 (7)

and the initial condition 7- = v, while tiue perturbation xo
satisfies the associated residual of Eq. (1).

The drag coefficient CD in general depends on the Mach
number, and the atmospheric weight density w is a function

of altitude. If both of these factors are assumed to be con-
stant during the time interval of interest, however, the aero-
dynamic coefficient [ý is a constant and Eq. (7) is easily
integrated. The results are

0•o og (l+u)l /2 (8)

xo Vo/(l+u) (9)

where

u V 0 t (10)

In these expressions, t is measured from the time at which the
fragment is at the local coordinate origin in Fig. I, ad v
is the value of v at that time.

Substituting Eq. (6) and (7) into the equations of
motion, expanding v in binomial series, and neglecting terms
of second order and higher in x-p and y, we reach the following
results:

x + 2  x+ g sin = 0 (11)

y + lixoy + g cosa = 0 (12)

These equations are linear in the displacement perturbations
ip and 7, and can be integrated analytically by standard
methods. The displacement and velocity perturbations are

xp =-(g/2) t 2 sino (l+u/3)/(l+u) (13)
9

y= -(g/2) E:' Cosa[L u(l+u/2)-log(l+u)]lu2 (14)

xp = -gt sinL [ l+u(l+u/3) ]/(l+u) 2  (15)

Y - -gt cosa (l+u!2)/(l+u) (16)

10



F'l
where u is defined as before by Eq. (10).

Th. leading factors on the right in the foregoing equations

expre,- the position and veloc.t'y changes due to gravity in the
elementary case of a drag-free trajectory. The multipliers con-

taining u all approach unity as u vanishes, and can be viewed as

corrections on the effect of gravity due to drag.

The drag coefficient and atmospheric density are assumed
to be constant during each time step at their values at the
beginning of the step. The method is self-starting in that the
position and velocity changes are computed from initial values
at the current step only.

Initial values v - V0 and a - a are assumed to be given
at the fixed coordinate origin in Fig. 2. Equations (8), (9),
and (13) through (16) give directly the displacement and
velocity components after a typical time step t in the local co-
ordinates. With respect to the fixed coordinates, the displace-
ments during the time step are obtained from the relations

N.x =x cosu - y sino, (17)

y = x sina + 7 cosu (18)

while the rotation of the trajectory tangent is given by

= tan (•/Ix) (19)

For low register trajectories, (i.e., those launched at
angles less than that corresponding to maximum range) the above
analytic perturbation equations with a - ..o furnish an approximate
solution for the complete trajectory in one time step t, the
total time of flight. At impact, the expressions for the position
coordinates x and y are of the form:

x = (x0 + V ) cosao- - sina (20)
o p 0 0

y = (7- +R) sin0+ cosa 0 (21)

where _o, X--p, and F are given by Eq. (8), (13), and (14).

111
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2.2 Fragment Density Computation

Munition effectiveness data are used to derive initial

conditions for the ballistic trajectories of fragments. These

data are in the form of initial velocity and number of fragments,
in each of several mass categories, and are functions of polar
angle measured from the nose of the munition. The resulting
fragment density at any point of interest can be computed
deterministically from the known terminal points of fragments
in all the mass intervals in each polar zone.

An individual munition is regarded as a nonisotropic point

source of fragments which is rotationally symmetric about its
longitudinal (nose-to-base) axis. Thus, the properties of the
fragments emitted by a single munition are functions of polar
angle 9 measured from the nose. The format of typical munition ef-

fectiveness data (Ref. 5) is shown in Table 1. Fragments in all mass
intervals are assumed to be emitted from a given polar zone at
the same velocity.

A single munition is assumed to be detonated at a level
ground surface, with the munition axis horizontal. -In order to
determine the probability of damage to targets at various dis-
tances and directions from the source, it is first necessary to
calculate the number densities of fragments of different terminal
ballistic properties in the field surrounding the source.

The fragments from a munition, considered as a point
source on the ground, may be regarded as originating from posi-
tions on a hemispherical envelope enclosing the source. Each
point of origin on the hemisphere defines an elevation angle

a and an azimuth ý in the horizontal plane measured from the
nose of the munition.

In Fig. 3, let u, v, and w be rectangular coordinate axes
centered at the source, with w the vertical direction and the
nose of the munition in the positive v-direction. Let R be the0
(arbitrary) hcmisphere radius, and 9 be the polar angle measured
from the nose of the munition,

12
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Transformation formulas between the spherical coordinates

(9,$) with the munition nose at the pole and the spherical co-

1 ordinates (%o) 6) with the pole vertical give the following

relations:

cos Q cos o Cos (22)

cos ¢ = sin ao/sin 9 (23)

Fragments on ballistic trajectories in the absence of wind

travel in planes of constant azimuth •.

For an individual munition, the initial fragment proper-

ties are functions of polar angle 0 only. Therefore, for given

elevation angle io and azimuth J, the associated polar angle

can be computed from Eq. (22) and all initial fragment properties
at that point on the hemisphere can be obtained from munition

performance data.

Now consider the fragments of a single mass interval, all
having the same average ballistic properties, emitted from a

particular munition at a point (uo) ý) on the enclosing hemis-
phere. For simplicity, consider target points in the ground

nlane of Fig. 3. The Lermilnal point corresponding tc this
initial point on the hemisphere is uniquely determined for each

nass category through the associated ballistic trajectory.

The family of trajectories for fragments o-f a given average
mass (i.e., those in one mass interval) can be thought of as a

mapping of points on the hemisphere into points on the ground
plane. Fragments of one mass interval originating from an
element of area Rcu c°SEoAOACo on the hemisphere are projected
into the element of area R&ýtR on the ground plane. Thus if

o is the number density of fragments in mass interval i at the

source hemisphere and ni is the number density at the terminal

point R, we have 2 o
0i=n RO Cos aO (4

n i *n. (24)
x RIdR/dao I

15
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This formula permits computation of the number density of

fragments in each mass interval originating from a point on

the source hemisphere at any azimuth 4, since for given
initial ballistic properties the terminal point R is known

from trajectory calculations. To calculate the number density

across a plane normal to the final trajectory, equation (24) is

replaced by

R cos a
ni M ni (25)dR

RI-sin af

where af is the final trajectory elevation angle.

For an individual munition the mapping derivative dR/dciO
is given by

dR 3R+ a dV•0  (26)

0 n 8 0 0a

where Vo is the initial velocity. From Eq. (22) we have

U•O " sin a cos i/sin 9 (27)

The partial derivatives WR/ao and WR/Vo can be obtained

analytically for lower register fragments; however, for upper

register fragments, they must be obtained by numerical differen-

tiation of a precalculated ballistic file. The analytic ex-

pressions for the lower register are

__ . 2R - cO c o 3% x cos . 2R-70 cosa
bO tan 2 - sin 2O n (28)

+R _ _ 2(R'7O cosao + x sinao/tancf)/Vo (29)

0 0

The derivative dV o/d is determined from munition effectiveness

data.

The computer model, moving along rays of azimuth in the
horizontal plane, determines the terminal properties of lower

register fragments at preselected radial increments of range

16



;. I out to maximum range. At maximum range the corresponding
elevation angle is noted and the remaining elevation angle
up to 90 degrees is divided into equal increments. The

model, utilizing the multi-step trajectory routine with a
fixed drag coefficient of 1.28, calculates the terminal prop-

a, erties of the upper register fragments corresponding to each
increment of elevation angle. The fragment number density can
be determined exactly at prescribed terminal points for lowerOS

register fragments and, by interpolation, at these same points
for the upper register fragments. These contributions are ac-
cumulated to give the total fragment density at the preselec-
ted radial distances. By symuetry it is only necessary to
perform the analysis in half the horizontal plane to one side
of the munition axis.

For a particu.lar target, nondamaging fragments based on
the applicable target vulnerability criterion are excluded
from the accumulated number density. The number densities
so calculated represent, in a statistical sense, expected
values of the numbers of impacts per unit area. That is,
these results, calculated deterministically as a function of
position in the horizontal plane, are the numbers of damaging
impacts per unit area to be expected on the average. To
calculate the associated probability of damage (i.e., impact
by one or more damaging fragments) to a particular target
requires a statistical representation of the process, incor-
porating these expected values of fragment number density.
In this study the target is a sphere of unit cross sectional
area and fragments are considered to intersect this target
across a plane normal uo the final trajectory direction.

2.3 Target Damage Probability

Calculation of the probability of damage to a particu-
lar target requires a statistical representation of the process
of impact by damaging fragments, involving the target area
and the expected number of impacts per unit area. The number
density of fragments is a function of position of the
spherical target in the horizontal plane of interest.

17



Consider a target of projected area Ai normal to the

trajectory of fragments of mass interval i at the associated

terminal point. Let Fi be the expected number of impacts per

unit area of fragments satisfying the applicable target vulnera-

bility criterion, The impact process is assumed to be uniformly

random in the immediate neighborhood of the point of interest.

That is, impact by a damaging fragment is equally likely on

all equal elements of area in the vicinity of the point.

Statistically, we then have what is termed a Poisson process.

The probability pi(J) of exactly j impacts on the target by

damaging fragments of mass interval i is given by

(FiAi)j exp (-FiAi)
Pi(J) -j'! (30)

The probability of 4mpact by none of the damaging fragments of

mass interval i is therefore

pi(O) - exp (-,.iAi) (31)

The target is assumed to be damaged if struck by one or

more damaging fragments of any of the mass intervals. On this

basis, the probability of damage to the target, q, is given by

q I - exp ( -T niAi) (32)

This last formula permits direct computation of the probability

of damage to a given target at every point of the" horizontal

plane of interest from the accumulated number densities of

damaging fragments and the associated projected areas. The target

in this study was a standing man. The man was considered to

present a projected area varying from 1.33 sq ft in plan to 9.0 sq

ft frontal area. Ai was then calculated as the sum of the pro-

jections of both a vertical and a horizontal target on a plane

normal to the final trajectory direction. The vertical target

had an area of 9.0 sq ft and the horizontal target had an area of

1.33 sq ft.

18



2.4 Description of Model Output

5 Contour maps, describing each of the seven munitions of

interest, listed in Section 1.2, were produced utilizing the
computer model and are included as Appendix B. For each muni-
tion there are three contour maps: one describing the fragment

flux (i.e., target hits per sq ft) due to all fragments; another

describing the fragment flux of all fragments with terminal
energy exceeding 58 ft-lbs; and a third which presents the
probability of serious injury to standing personnel computed as
described in the previous section.

Another set of figures is shown in Appendix C. Here
again, there are three sets of figures per munition. These
are simplified curves, derived from the corresponding contour
maps, and represent fragment density and damage probability
in certain sectors of the ground plane as functions of radial
distance only. There are three of these fixed sectors: that
is, 10-degree sectors in the base and nose of the munition
and a third sector representing a peak side-spray. This third
sector varied somewhat among all of the munitions, but was
usually defined by a line of peak values appearing within
+ 10 degrees of the 90-degree azimuth. This line of peak
values did not usually include the outermost or lowest value
contour. The average value of this contour in the side spray
sector was determined by inspection from the maps.

Both the contours and the corresponding curves represent
the fragment field from a minimum range of 250 ft out to the
prescribed limit of effect (i.e., one hit per 6000 sq ft for
fragment densities and a probability value of 0.0001). The
minimunm range is a function of a prescribed input variable and
was chosen as 250 ft in this study. Since the results represent
a single unit of munition and it is anticipated that future use
of these results may be directed at multiple unit stacks, it seems
reasonable to assume that the far fields results will be of more
interest and the minimum range of 250 ft will be quite sufficient.

I 19



3. MUNITION EFFECTIVENESS DATA

Previous studies (Ref. 2) have indicated published munition
effectiveness data, in their present form, are not suitable
for far-field fragment hazard analysis. In general, thcse data
place heavier fragments into one or two broad weight intervals
with a corresponding average weight. Since the heavier frag-
ments travel greater distances and their resulting terminal
kinetic energy effect is high, it is necessary that these frag-
ments be resolved into an adequate number of weight intervals.

This section of the report describes several tasks which
were undertaken to provide a systematic approach to both illus-
trating the need for and subsequently the methods utilized in
revising munition effectiveness tables.

3.1 Documentation of Original Fragmentation Arena Data

In collaboration with the Ballistics Research Laboratory
at Aberdeen Proving Grounds, the fragmentation arena test
procedure and data analysis techniques used to obtain munition
effectiveness data were reviewed. Arrangements were made to
examine the original arena test firing records at the APG
Technical Library for the following munitions:

* 105 mm Howitzer Projectile Ml
e 155 mm Howitzer Projectile M107
* 175 mm Gun Projectile M437A2
e 750 lb General Purpose Bomb M117A2 (APG Data)

Subsequently, contacts were established at NWL to obtain similar
arena test data for the following munitions.

* 5-in/38 Projectile Mark 49 Mod 0 (VT)
* 8 in/55 Projectile Mark 25 Mod I (HC)
* 500 lb Low Drag Bomb Mark 82 Mod I
* 750 lb General Purpose Bomb M117A2 (Eglin AFB Data)

For each munition the following information was documented.

20



TIn
* Test munition physical measurements

* Specifications for each arena test facility

* Listing of mass groups and polar zones

* Individual listing of fragment weights greater than
150 grains.

j An understanding of the fragmentation arena test techniques
is an important factor in the proper assessment of the larger and

- more hazardous fragments. The arena test is used to determine
fragment mass, velocity and spatial distribution of high-explosive
munitions. The munition axis of symmetry is located horizontally

all and is taken as the polar axis. Designating the polar angle by
9 and the azimuth angle as ý, the fragmentation characteristics

are a function of 9, and gravity effects are assumed negligible.
An arena is constructed of an appropriate size as illustrated
in Fig. 4. The arena test is designed to sample fragmentation
characteristics in various polar angle intervals ranging
between 9 = 0 degree at the nose, and 9 = 180 degrees at the
base of the munition. These data samples are used to predict
the fragmentation characteristics for the entire munition.

An important aspect of the arena test procedure is the
relationship between the sample size obtained from the incremental
polar zone on the arena recovery panel and the corresponding
munition polar zone. Calculations were made from actual arena
setup data to estimate the magnification factor associated with
the integrated munitions data. These data, summarized in Table 2,
indicate that only about 2 to 7 percent of the fragments are
sampled in the 90 degree polar angle region (side spray) for each
test. Thus, each fragment must be multiplied by a factor of 15
to 60 to obtain integrated data. It should be noted that the
fragment sample size is about doubled at the 30 or 150 degree
polar angle regions, and then increases rapidly to near 100 percent

at 0 and 180 degrees (nose and base regions).

Table 3 summarizes data associated with fragments in excess
of 150 grains for the munitions of interest. The 150 grain
fragment was assumed to be the minimum damaging fragment mass
projected at low elevations. Table 3 indicates that fragments
in excess of 150 grains represent only 5 to 18 percent of the

21
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total number of fragments but comprise 52 to 93 percent of
LhIu Lotal case metal weight considered. In general, the weight
groups beyond 150 grains are few in number and wide in weight
interval. Since these heavier fragments are few in number and
averaged over wide weight intervals, the data samples developed
from arena tests are statistically inadequate in describing
the characteristics for these potentially damaging fragments.
As an example, the munition effectiveness data may list 60
fragments in one polar zone, each weighing 1100 grains and with
a common velocity, while all other zones are free from that
category of fragments. As input to the hazard model, these data

could yield a ring-shaped hazardous region in the far field.
It may be more reasonable to assume these fragments to be dis-
tributed statistically such as 30 units at 900 grains, 20
units at 1200 grains, and 10 units at 1500 grains, with the
fragments being dispersed over three polar zones. In this
regard, the distribution characteristics associated with frag-
ments less than 150 grains could be used to predict the statis-
tical distribution characteristics for the heavier fragments.

It should be emphasized that the munitions effectiveness
data are valid statistically for characterizing munition per-
formance for fragments of interest to the user. In general,
the heavier fragments are only considered in the arena test
procedure to assure that a conservation of weight is maintained
between the recovered fragments in the arena sample and the
integrated munition effectiveness data.

3.2 Revision of Munition Effectiveness Data

Seven sets of data, corresponding to the seven munitions
of interest, were considered and of these, six were altered
to overcome one of the following two fundamental deficiencies:

1) Gap4 - Toward the heavier mass categories, "data
voids" appeared making it difficult to approximate
the cumulative distribution of mass as a continuous
function.

2) Refinement - The cumulative distribution of mass
loses definition where the final mass categories
are an amalgam of all mass greater than the upper
limit of the preceding category.
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The first of these deficiencies were more predominate in
the 175 mm and 155 mm munitions while the remaining sets of data,
with the exception of the 105 mm, had poor refinement in the heaviest
mass category. Each problem was handled differently, and in
general, the problem of refinement was the most amenable since
it was not necessary to add "fictitious" mass categories as it
was in the case of data with void deficiencies.

It is prudent to comment that the best improvement which
can be made on the experimental data is increasing the sample
size. It is recognized then that with restricted data collec-
tion techniques and limited sample sizes, extrapolation and sta-
tistical inference must be conservative and cautious.

The basic indicators which were used to establish trends
and to make decisions, were the average mass (m-) per mass
category, the associated standard deviation (c), the ratio

/7, and the average mass frequency (f) for each mass category.

Tlie primary data for a particular munition was processed
to print out a matrix of fragment weights and frequencies with
mass categories as columns and polar zones as rows. Calculated
inforva,_ion consisted of average mass mi over all polar zones j
within each mass category i, the corresponding average frequency
fi' the standard deviation '-i, a ratio ,i /Mi for each mass
category, the total weight W - 7: Mijfij, and the cumulative dis-
tribution of weight

k i f
Fk = 7 k = 1,2 N (33)

for all N mass categories. The two fundamental deficiencies noted
in the data were identified by inspecting the cumulative frequency
curve for obvious gaps in the domain of the function and by
observing anomalies in trend of standard deviation values for the
mass categories.

Two cases which will serve to illustrate the method.

A. The 155 mm Munition

The cumulative distribution curve (Fig. 5) was plotted and
ýt was noted that although the average mass categories range up
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to about 2800 grains, almost 100 percent of the weight has been

accumulatCd at about 1200 grains. By inspection of the curve

in Fig. 5 it was decided to start by adding a data point at

about 2000 grains so that that portion of the curve would be

less sparcely populated. The next decisions must phrase an

answer to the questions: how much, and in what manner?

First and second moments were used as the indices of

central measure and dispersion of the distribution of mass
and frequency across the polar zones within a mass category.
In general, the data available in the higher mass categories
is not sufficient to construct a reasonable frequency histo-
gram. In the lower mass categories it becomes possible to do
this and in order to obtain a graphical sense for the distribu-

tion of this mass, histograms were constructed for several
categories. Figure 6 depicts the weight distribution in the
200-250 category for the 155 munition. There is another dis-
tribution which will be used as a decision aid. This is the
frequency of mass over all mass categories with polar zones
constant. This curve is shown in Fig. 7.

Essentially then, we have a two-dimensional polar zone -

mass frequency matrix in which we would like to make additional
entries. Toward this end trends are identified in two direc-
tions: across columns (mass categories), and across rows
(polar zones). The intersection of these trends at the point in
question allows an estimate of the permissible. entries which

can be made at this point.

It was noted that the ratio ai/91 tended to be fairly

constant and, in case of the 155 mm munition, the average ratio
was on the order of .061. Using this in conjunction with the

intention of adding mass at R - 2000, the dispersion measure is
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i estimated as .061 x 2000 - 122. The plot of polar zone fre-
quency versus mass category (Fig. 7) was consulted, and a

frequency of 30 was associated with the average mass of 2000

grains. By observing the trend across the mass categories,

attention focused on polar zone 7 (60-70 degrees) and polar zone3 11 (100-110 degrees). Further. by noting the distribution of
frequencies across the polar zones in the previous categories, the
same proportions are used to obtain:

Mass Category m W 2000 grains
i Frequency f - 30

Polar zones receiving entries - 7 and 11

The frequency in previous
,,ass category - 79

F a1230

J Distribution of mass in [11/79 for zone 7
zones 7 and 11 for
m - 1230 68/79 for zone 11

Distribution of mass in 11/79 x 3004, zone 7
zones 7 and 11 for =
m - 2000 j68/79 x 30 =26, zone 11

I Now using c estimated at 122 for • - 2000, we obtain

3 + c - 2122

m - , - 1878

It should be noted at this point that the selection of •,
and consequently R + O impose an implied condition of symmetry
for the distribution of mass in that particular i category.
This mass is further apportioned so as to agree with the trend
generally defined by the preceding adjacent category thus
bending the implied symmetry to conform with a distribution

which is most likely not symmetrical. When data is added in
this way the recalculated average mass will not generally agree
with the original average mass E, which was a somewhat arbitrary
selection to begin with. The new iF will be fairly close and
in case of the 155 munition the data point was added at 2090I instead of i - 2000. The completed profile for the new "fic-
titious" mass category consists of the following:

1 1. All polar zones empty except 7 and 11
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2. A mass of 1878 grains with a frequency of 4 is 1
entered in polar zone 7

3. A mass of 2122 grains with a frequency of 26 is ,
entered in polar zone 11.

To complete the addition of this new mass category we now

consider the conservation of total mass effects. Obviously after

the addition of a new mass the total mass T1 has been increased

by some increment T2 . Thus, we have from the original or

primary data

SfiJ ij , T, (34) -"

where? mij is tMe fragment mass in the jth polar zone in the

ith mass category, and fij is the associated frequency. Now

with the added data points we have

":fijm i +j + i mij = TI + T2  (35)

where mj and f are th,! added data for the additional mass
i j ij

categories The objective is to scale down all fij' and

f proportionately such that for new f

f . fimij + f" mi T. (36)

Toward this end, let p.j be that proportion of fij which generate

the new fij such that Eq. (36) is satisfied for new fij.

Then for original fij'
k N

fPij fijmij + i=k ij ii = TI (37)

Dividing both sides of (37) by T1 = fiij, we have
YY f Y Pij fim

+i fiimiii+ - = 1 (38)
i j i ii + (38X> fijmij ijmij

recalling that W =fx ff t(x) g(x)

the first term in (38) is p. Hence,
N ,*
ik Pijfijmij

"=+ (39)

i fijmij
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Since the sum ZZ pijfulzj4 ia over small ranges of i and j the

error will be small if we substitute p for Pij
z * *

P + P 7.7 f ij i I (40 )

iji i

or + (T2/T 1 ) - I

and T(
F - T + T2(41)

I The result shows that we can readjust all the frequencies
by one constant of proportionality. Hence, a complete set of new

I data is generated with an added data point on the cumulative curve
with the conservation of mass. The new cumulative curve, plotted
from the revised data set, is shown in Fig. 5. As in every other
case, the curve is shifted downward, which introduces a conservative
element into the interpretation of the data.

B. The 500 lb Bomb

J The cumulative distribution for this munition was plotted
from the original data and is shown in Fig. 8. Without modification,

the original data was divided into ten mass categories:

0-10, 10-20, 20-40, 40-80, 80-120, 120-150,1 150-190, 190-230, 230-310, 310 + grains

The problem in this case is poor resolution. The standard deviation
for example is 3.26 for category number 4, 8.33 for category

number 6, 7.93 for category number 8 and 698.5 for category number 10.
The standard deviation of 698.5 is not in itself unexpected. Because
of its magnitude, it is an anomaly since its ratio o/! = .754
is more than ten times the expected value of approximately .06.

I Moreover, it is a sharp break in the standard deviation trend.
If we focus on mass category No. 10, then we find it labeled as

J 310 +. This is misleading since, in fact, mass category number 10
contains fragments which weigh as much as 5000 grains. To over-
come thiA.s resolution deficiency, the 10th category was expanded into
five additional categories such that the total number of mass
categories became 15.
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iCategory Range
10 310-450
10 450-750

12 750-1000

13 1000-2000

14 2000-3000

1 15 3000 +

These mass categories were then added on to the data, replacing

I the former category number 10. The result was a better than

50 percent improvement in the average u/m for categories 10

thru 15 and a smoothing of the expected standard deviation trend.

The altered cumulative distribution is shown in Fig. 8.

i The data received from the Navy was not directly usable with

out extensive recoding and key punching. This was done for the

I 750 lb bomb and the cumulative distribution appears in Fig. 9.

This curve falls below the curves for the original data and its

altered form. Since the lower curve implies more mass in the

higher mass categories it also implies a greater damage influence

range. In all cases the alteration of the data produced the same

j effect by lowering the cumulative distribution curve.

The following is a summary of how the remaining data were altered.

No alterations were necessary for the 105 mm shell.

750 lb bomb: originally had 12 categories. The label on

I category 12 was 450+. Six additional categories were added
as follows:

1 12 450-700

13 700-900

14 900-1200

15 1200-1500

16 1500-2000

f 17 2000-3000

18 3000 +

I 3
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The cumulative distribution is shown in Fig. 9

5 inch Munition: 11 mass

categories were expanded to 14 as follows:

11 250-450

12 450-700

13 700-1500
14 1500-2000

i The cumulative distribution is shown in Fig. 10.

i The 8 inch Munition: 10 mass

categories were expanded to 16 as follows:

10 160-300

11 300-500
12 500-700

13 700-1000
14 1000-2000

j 15 2000-3000

16 3000+

I The cumulative distribution is shown in Fig. 11.

The 175 mm munition: two data points were added
1 to the cumulative distribution as shown in Fig. 12.

The technique was the same as described for the 155 mm
j munition.

A complete set of the revised munition effectiveness tables
are presented in Appendix E to this report. Their format is
similar to that shown in Table 1.

I 3.3 Model Sensitivity to Input Data

In order to gain an appreciation for the sensitivity of5 the fragment hazard model output to alteration of munition effective-
ness data, which is input to the model, a computational experiment
was conducted. The unaltered and altered data sets for the 175 mm
gun shell were used as input to the model. The results of these

two cases are shown respectively in Figs. 13 and 14. The primary
I difference between the two sets of contours is the location of

the lowest value contour line.
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The altered data set represents an emphasis on the resolution

of the heavier fragments, (e.g., note Fig. 12) at the expense

of lower weight fragments. This has the pronounced effect of
shifting the location of the lowest value contour line outward

for the altered data set. In terms of safety, then, the altered

data set results in a more conservative set of contours.
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4. RESULTS CONCLUSIONS, AND RECCMMENDATIONS

This study has resulted in the development of a computer

model which generates the information necessary in establishing

minimum separation distances between various munition types

and personnel in order to mitigate fragment hazards. The

model specifically treats the fragment hazard associated with
a single munition and has been utilized to generate single unit

fragment hazard data for seven common military munitions. While

single unit detonation does not represent a realistically severe
accident situation, previous work indicates that multiple unit
(i.e., stacks) fragment hazards may be proportional to single
unit results. If this is true, and there is evidence to support
such a hypothesis in the case of thin wall munitions, then the
results obtained herein are directly applicable to estimating
the fragment hazards assoLiated with openly stored munitions.

4.1 Results

" Contour maps, expressing number density and injury
probabilities (i.e., Appendix B), are seen to be
particularly pronounced in three fixed sectors of
the ground plane; that is, the nose, tail and side-
spray sectors. Average values within each of these
sectors have been expressed as functions of the radial
distance from the explosive source. (i.e., Appendix C)

"* Examination of the relationships in Appendix C indicate
that the side spray sector is the critical area in the
case of thick wall "shell type" munitions and to a
limited degree in the thin well "bomb" munitions.

"* The curves in Appendix C also serve to illustrate how
the kinetic energy criterion for personnel injury
(i.e., 58 ft-lbs) reduces the applicable number
density. At a given range the number density is re-
duced as much as an order of magnitude. IL shuuld be
recognized that consideration o a less severe kinetic
energy criterion will lead to lesser reduction in num-
ber ensity and thus a more conservative injury cri-
terion in terms of safety.

"* Table 4 summarizes the results available in Appendix C
for each of the scven munitions considered. The table
gives the computed distances corresponding to a fragment
density of one hit in 600 ft 2 for all fragments and frag-
ments with a terminal energy in excess of 58 ft lbs.
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TABLE 4
SUMMARY TABLE FOR THREE PRINCIPAL DIRECTIONS AT 1 HIT

PER 600 SQ FT (ENTRIES ARE IN RADIAL FEET)

All Fragments Hazardous Fragments

Munition
Nose Side Tail Nose Side Tail

750 (i)* 440 1060 740 220 690 500

500 (1) 220 825 595 210 670 450

175 (1) 250 840 575 250 450 200

155 (1) 290 810 510 120 400 230

105 (0) 240 650 360 100 270 150

8 (1) 325 660 240 140 520 120

5 (1) 310 720 340 140 275 150

(0) - Unaltered Data
(1) = Altered Data

**Hazardous fragments are defined as having in excess of

58 ft lbs kinetic energy
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4.2 Conclusions

"* By utilizing trajectory analysis in conjunction with
stochastic treatment of experimental input data and
damage functions, a mathematical model has been de-
veloped for estimating injury/damage contours for
various single unit munitions. ""

" The mathematical model currently utilizes published
munition effectiveness data which has been altered
to give more emphasis to heavier fragments. It has
been observed that this results in extending contour
levels outward giving a more conservative result
insofar as fragment safety is concerned.

4.3 Recommendations

Before making specific recommendations concerning the

results generated in this study and future research efforts it

is prudent to discuss the adequacy of munition effectiveness data

as input to the model.

The results generated by the computer model are dependent

upon ,and quite sensitive to the munition effectiveness data,

which is input. This data was originally generated to support

munition effectiveness studies and is the result of explosive

tests of single unit munitions. It is the only known source of
information concerning near-field estimates of munition fragment

size, number and initial velocity. However, since it has been

collected to be utilized in weapon effectiveness studies, it is
primarily concerned with the fragments which are effective within
the applicable range of the munition. This has normally led to

a set of data which has a high degree of resolution, in terms of
weight intervals, where the greatest number of fragments are con-

centrated. This unfortunately is at a rather low fragment weight

(e.g., below 300 grains). The remaining fragment weight of the
munition is quite substantial, but because it does not break

down into very many fragments and is not always projected into

the designed zones of munition effectiveness, its recorded

resolution is usually quite poor.

Another inadequacy of recorded munition effectiveness data

is concerned with its use in representing the basis for multiple

unit munitions fragment hazard analysis. Here, the primary
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concern is whether the munition fragment size, number and initial
4b velocities will be similar for munitions in single and multiple

units.

In the present study an attempt has been made to overcome
the first of these deficiencies in a conservative manner. That
is, existing munition effectiveness data have been altered to
adequately resolve higher weight fragments in a statistical
sense. Recently reduced data, developed at the Naval Weapons
Laboratory, tend to support these alterations; however, the
best way to resolve this problem would be the design and use
of an experimental procedure aimed at obtaining arena data for
hazard analysis.

.1;
The problem in assuming similar fragment characteristics

for multiple and single unit stacks is a much more difficult
problem to resolve. A number of detonation tests of stacked
munitions have been conducted in the past where resulting
fragments have been collected. in some cases the fragments have
also been sized and number and weight distributions computed.
Results oi these studies indicate that thinwa]l "bomb type"
munitions tend to fragment into similar size fragments for both
multiple and single units. However, it is becoming quite apparent
t'..at this is not the case for thickwall "shell type" munitions.
Here, fragment weight and number distributions from multiple
units are quite different from single unit munitions.

In light of the input deficiencies enumerated above, the
following recommendations are made:

* To take care in utilizing results obtained in this
study for single unit munitions, in projecting
fragment hazards associated with multiple units of
similar munitions. This is especially true of"shell type" munitions.

"a To compare the analytic results for the single unit
750 lb bomb obtained in the present study with expcri-"mental multiple unit results obtained in the NWC-
China Lake Tests of March, 1970. Such a comparison
will serve to validate our analytic procedures andthe extension " " f our results for estimating multipleSunit "bomb" fragment hazards.
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* To characterize the resulting fragment number and
weight distributions obtained from the June, 1970
155 mm shell tests at Yuma and the corresponding
155 mm shell tests at China Lake in December of
1971. These tests are expected to be dissimilar
amongst both themselves and as compared to single
unit results. However, such comparison will
document these differences and the resulting dis-
tributions can be utilized by the analytic model
to estimate the fragment hazard associated with
both these cases.
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APPENDIX A

PROGRAM USER'S MANUAL

The computer program for the fragment hazard model has
been written in such a manner as to accept a problem-oriented
input language. The following discussion describes, in detail,
the various control and data statements required to execute
the program. An example of the use of these statements in a
sample problem is included.

Control Cards

All control cards start with column I = '$' The remainder of
the card is free format. Only columns 1-72 may be used for con-
trol text; columns 73-80 are not examined and may be used for

anything.

Control Statement Form

Control statements are of the form:

name fieldl field2 ... fieldn

where 'name' identifies the control statement, and the 'field's
are parameters whose form depend on the particular control state-
ment. 'name' and the 'field's are separated from one another by

1) one or more blanks, or
2) a comma, padded on either side by one or morz blanks.

Examples: $PRINT CONDATA

$TAPE 4,SRCH=)1100,BKSP

$STOP

If desired, comments preceded by a '$' may appear after the last
field.

Example: $STOP $ END OF RUN

If a control statement will not all fit on one card, it may be
continued to additional cards in the following way:

I) place a comma after the la ,t field on the first card.
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2) start the second card with a '$' and a ',' (padding
with blanks if desired).

3) place remaining fields after the '$' and ',' on the
second card.

4) as many continuation cards as necessary may be used.

Example: $ORDNANCE FORMAT2 ,REDUCE ,REZONE ,NORM ,SMOOTH,
$,READ-3,LIST $ READ FROM TAPE 3

Parameter Form

Control statement parameters may be of three forms:

1) Positional: A value which must appear in its proper
order on a control statement, as the first parameter,
third parameter, etc.

Examples: 3, 14.197, T, 'TITLE A'

2) Flag: A name, or the two characters 'NO' prefixed to
a name. A flag may appear anywhere in a control state-
ment after the positional parameters (if any). A flag
is associated wit' a logical value: this value is TRUE
if the flag's name is specified, or FALSE if 'NO' plus
the flag's name is specified.

Examples: LIST, NOLIST, BCD, BIN

3) Keyword: A name, followed by either a BCD (3-8 punch)
or an EBCDIC (6-8 punch) equal sign (-), which may be
padded with blanks, followed by a value.
A keyword parameter may appear anywhere in a control
statement after the positional parameters (if any).

The variable represented by the name is set to the pro-
vided value.

Examples: ORDER-2, Z-5.5, FLAGS-XY, TITLE-'TITLE A'

Value Form

There are four types of values:

1) Logical: a string of one or more characters, not con-
taining any of the following: dollar sign ($), com-
ma (,), equal sign (-), blank, or apostrophe ( ). If
a T appears in the string before an F appears, the
value is TRUE. If an F appears before a T appears, or
if neither an F nor a T appear, then the value is false.

Examples: T, -TRUE., TRUFFLE and TRUE are all TRUE.
F, .FALSE., AFTER, FALSE and NO are all FALSE.

A-3
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2) Integer: one or more digits, optionally preceded by
a + or - sign.

Examples: 0, -1234, +77111

3) Real: a real number. Decimal point and exponent may
be used. The exponent, if present, must be of one of
the following forms:

En, E+n, E-n, +n, -n

where n is one or two digits.

Examples: 0, -1234, +77111, 3.1416, 6.0238E+23, l.-5,

-.1+10, 51E6

4) Alphabetic: two forms are allowed.

* a string of one or more characters, not containing
any of the following: dollar sign ($), comma (,)
equal sign (=), blank or apostrophe ().

Examples: ABC, 123, MACH-I

* a string of zero or more arbitrary characters, en-
closed in apostrophes ('). Within the string, one
apostrophe is represented by a pair of apostrophes.
6itiier tLke 6CD (4-8 punch) or EBCDIC (5-8 punch)
apostrophe may be used.

Examples: 'ARTHUR' 'WHICH WAY?', 'DON''T CO',

'TITLE A, '' ( a null string)

Notation

When describing control cards, some possibly unfamiliar notation

is used. This can be explained with an example:

$TAPE n ,BCD}_ [,REW]

The use of {means that only one of the arguments listed may be

used. If one of the arguments is underlined, that one will be

assumed if none of the group are specified. (In the example, BIN

is assumed unless BCD is used. BIN and BMD may not both be used.)

The use of [ ] means that the enclosed argument is not required;

it may be used or not used.
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$PRIN1. ,CONJ[(,DATA ]

Print controls

CON Cause control cards to be printed.

DATA Cause data cards to be printed

I$STOP
End of run; execution is terminated.

I $TIME
Print elaosed time since beginning of execution,
and since last $TIME statement.

,TAPE nbcDJ: S -SK]Pk] ' SRCk"a BKSP],WEOF]

TP n,,BN;L , ,XSRCHc ,K, -

Tape file manipulations. If more than one of
the operations (REW through WEOF) are specified,
the operations take place in the order REW,SKIP,
SRCR or SXRCH, BKSPWEOF, regardless of the order
in which the operations are specified.

n Tape unit number

BCD Tape is formatted (BCD)

BIN Tape is unformatted (binary).
If neither BCD nor BIN is specified, BIN is assumed.

REW Rewind unit n.

J SKIP-k Skip k records on unit n.
SRCH-u Search unit n, starting at its present position,

for a sentinel rec.ord whose key is a (I to 8
characters). Terminate if no such sentinel is
found before the end-of-file.

XSRCH-a Proceed as with SRCH, but if an end-of-file is
encountered, rewind unit n and search the entire
file. Terminate if end-of-file is again reached
without finding the proper sentinel.

JBKSP Backspace unit n one record.

WEOF Write a terminal sentinal record and an end-of-
file mark on unit n.

$ORDNANCE FORMAT=n[ ,NSETS=n] [ ,REDUCE] [ ,REZONE] [ ,NORM) [ ,SMOOTH]

j ([,ORDER-n)[ ,READn][ ,LIST] [,KWIKPLOT] [,SUMMARY)

Cause a title card and a set of ordnance data
to be read.

J FORMAT-n Ordnance format code. -1 or 2.

NSETS-n Number of ordnance components (fuze, casing, etc.)
If 0O or omitted, NSETS-I is assumed.
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REDUCE Halve the number of mass categories by combining
each pair of categories.

REZONE Transform data from N+1 sets of values at the
boundaries of N polar zones to N sets of values
at the N polar zone midpoints.

NORM Normalize data, given as total number of frag-
ments per mass category per polar zone, to
number per unit area on a unit sphere surrounding
the ordnance.

SMOOTH Fill in gaps in data, and (if ORDER)0) apply a
smoothing function to the ordnance data.

ORDER-n Use an nth order Fourier series to smooth data
(if SMOOTH is specified).

READ=n Read ordnance data from unit n, a BCD card image
unit. If n-5 or if READ-n is omitted, ordnance
data is assumed to follow the $ORDNANCE statement.

LIST List ordnance data in tabular form.

SUMMARY List data summary information: total mass perI
mass category, per polar zone, etc.

KWIKPLOT Produce printer plots of velocity curve, and of
mass and number curves for each mass category,
all as a function of polar angle.

An ordnance title card is read immediately after a $ORDNANCE state-

ment is encountered. Columns 1-72 contain a description of the

ordnance.

Two basic formats are defined for ordnance data (FORMAT-l and 2).

Within the context of each format, several data conditioning op-

tions are available (REDUCE, REZONE, NORM, SMOOTH, ORDER-n).

Ordnance data is read from cards if the READ field is omitted, or

if READ=5. If a READ field specifies some other I/O unit, input

is read from that unit in card image form. This unit is assumed

to be properly positioned.

The first card (or card image) of a set of ordnance data is as fol-

lows, regardless of the type of ordnance data.
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Ol. FORMAT NAME DESCRIPTION I •

1-5 15 NMORD Number of mass categories. J
If NMORD> 30 (maximum number of mass
categories), REDUCE must be specified
to cut the number of mass categories in
half.

6-10 15 NVORD Number of measurement positions along a
meridian from nose to tail. Measurements
may be made either at the center or at
the edges of equi-spaced polar zones. In
the latter case, REZONE must be specified
NVORD(37.

11-1i 15 IDORD Ordiianct 1.D. humber O0&DORr•99.
16 (ignored)

17 Al IVO Ordnance modification code. If left

blank, IVO-'O' is assumed.

18-20 (ignored)

21-30 E10.0 XKORD Average fragment drag factor (grains/in. 3

rornmaL 1 Ordnance Data

Data of format 1 consists of NVORD groups of cards, each containing:

9 rNMORD/41* cards, in(4(2F5.1,5X))format, containing NMORD
pairs of values: the average f, gment mass (grains) and
the average number of fragments lor each mass category,
for one polar zone.

* one card, in (50X,E10.I) format, containing the average
fragment initial velocity (fps) for one polar zone.

Format 2 Ordnance Data

Data of format 2 is split into two parts.

Part 1 contains NSETS of cards, each consisting of fNMORD/41 groups

of NVORD cards. Each card is in (AEI0.O) format and contains

four pairs of values: the average fragment mass (grains) and

the average number of fragments for four mass categories, for one

polar zone.

I.IX, in-JiLtb The smallest integer not less than X.
Examples: '3.14]-4, [141-14, [7.00001-O[7.99991-8.

"•Fragment number information in the form of a count of the total
number of fragments in a polar zone may be used, provided that
the NORM parameter is specified on the $ORDNANCE statement.
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Zone 1Zone 4
Zone 2 Zone 3

Hypothetical Sphere of Unit
Radius Surrounding Ordnance.

Sphere divided into four polar
zones, each of equal latitude
range.

MesrmnsTaken at Center Measurements Taken at Zone

Me$ORDNANnE Statment

A-8
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I
Part 2 contains NSETS sets of cards, each consisting of NVORD cards
in (50X,EIO.O) format, each of which contains the average fragment
initial velocity (fps) for one polar zone.

1 $BOOM [ ,FLAGS-r.] L ,NBAR-n][ ,ORDER-n] L ,Z-h][ ,DRNG-r]I[ ,NRNG-nl
[ ,NEL-n',[ ,NAX-n]Generate a fragment distribution using ordnance

data read according to the prior $ORDNANCE state-
ment. Write the fragment distribution field,with a sentinel record on binary unit 4.

FLAGS-c . consists of one or two characters. If a is one
character, the second flag character is assumed
to be zero. If the FLAGS field is omitted, both
flag characters are assumed to be zero. The flag
characters are used in the sentinel I.D. for the
fragmeut field output.

NBAR=n Number of barriers placed in the vicinity of the
"ordnance. If omitted, NBAR-O is assumed. Barrier
description cards, if any, are read after the frag-
ment field title card, NBARI.

Z =l h height of target plane (in feet) abovc ordnance.
If Z<O, the ordnance is above the target plane.

DRNG=r spacing of range points, in feet,

"NRNG-n number of range points on an azimuth ray, NRNG <20.
NEL-n Number of elevation angles to be considered (high

*1register fragments), NEL_<18.

NAZ=n number of azimuth rays in fragment field (a semi-
circle), NAZ<36.

The following cards are read immediately after a $BOOM statement
:.s encountered:

0 A title card. Columns 1-72 contain a description
of the fragment field.

. If NBAR)O, NBAR barrier description cards are read.
The format of each card is:

A
!
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"6.

COLS FORMAT NAME DESCRIPTION

1-5 15 IBTYP Barrier type code.
1-barrier is a circular arc, with

ordnance at center.
2-barrier is straight and is closest

to the ordnance at its midpoint.

5-10 (ignored) -

11-20 E1O.0 BCPH Azimuth angle (deg) of barrier
midpoint

21-30 E1O.0 BWPH Extent of barrier in azimuth (deg)
on either side of midpoint.

31-40 E1O.0 BHAL Angular height of barrier (deg), as
seen from the ordnance. If IBTYP-2,
this angular height is measured at
the midpoint of the barrier.

ii

0 -= BCPH "
Taill Tail 2 0

Nose ~Nose •.

Circular Barrier Straight Barrier
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5 ,TABLES

,PARAMS
,LIMITS$OUTPUT ,EXEC[ ,PLOT] ,KWIKPLOT] [,LIST)
,RANGE
,SOJAC

Read functioa definitions or computeI and plot functions of the fragment
field variables (velocity, striking
angle and number per square foot, as
functions of range and azimuth).

The fr&egment field is read from binary
unit 4, which is presumed to be prop-
erly positioned.

TABLES Read Damage Threshold Vglocity Tables
or Formula Coefficients.

Between two (2) and five (5) cards
are read for each Table or Formula.
The formes of these cards are given
below. The end of input is marked by
a card containing blanks or zeroes in
columns 1 and 2.

PARAMS Read a title card, and fragment thresh-
old and target description cards for
each fragment field function.

Between two (2) and four(4) cards are
read for each function. The formats
of these cards are given below. The
end of input is marked by a card con-
taining blanks or zeroes in columns 1
and 2.

LIMITS Read an output parameter card for each
fragment field function.
The format of this card is given below.
The end of input is marked by a card
containing blanks or zeroes in columns
1 and 2.

The formula used is the empirical relationship derived under
project THOR.

A-11

A-il



EXEC Compute and plot specified functions
of a previously computed fragment
field. Functions are specified on the
data card following this control card.
The format of this card is given below.

The fragment field is read from binary
unit 4, which is presumed to be properly
positioned.

The functions are specified using two
digit codes, whose meanings are:

01 total number of fragments (per sq ft)
02 total fragment mass (lb)

03 total fragment momentum (lb-sec/ft )

04 total fragment kinetic energy
(ft-lb/ft)

05-07 (unused)

08* average fragment impact velocity
(ft/sec)

09* average fragment impact angle

(radians)

lj number of damaging fragments,
using table j.

21 probability of damage, using table J.

3j compute and plot lj and 2j together
(this is cheaper than specifying lj
and 2j separately)

4j number of damaging fragments, using
Thor coefficient set j.

5j probability of damage, using Thor
coefficient set j.

6j compute plot 4j and 5j together
(this is cheaper than specifying
4j and 5j separately)

7j-9j (unused)

Up to eight (8) functions may be com-
puted and plotted at one time. To plot
more than eight functions, the fragment
field file must be repositioned, and
another set of plots requested.

Functions 08 and 09 must both be specified if either is, and must
be the last function codes specified.
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Note that a function code of 3j or 6j
causes two plots to be generated, and
that specification of functions 08
and 09 counts for 3 functions, even
though only two plots are generated.

PLOT cause function values to be written to
the plot file (file 2) for later
processing by a contour plotting program.

KWIKPLOT generate contour plots of functions
values on the printer.

RANGE read plot range parameters from data
card following this control card. The
format of this card is given below.

SOJAC read characters to be used for printer
plotter (see KWIKPLOT) from data card
following this control card. The format
of this card is given below.

LIST list data read with this control card.

A-13
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Data cards read after a $OUTPUT,TABLES statement. Between two and
five cards are read for each table or formula coefficient group.

COLS FORMAT NAME DESCRIPTION

Heading Card

1 11 IT type code. If IT-I,2 or 3, table IS is
to be read. If IT=4,5 or 6, coefficient
group IS is to be read.

IF IT=0 and IS=O, the end of this group
of data cards has been reached.

2 TI IS table or coefficient group number.
0<IS-9.

3-5 (ignored)

6-10 15 NTB (used only for tables) number of M-V
pairs to be read. NTB<14.

11-15 15 JDUJM (used only for tables) interpolation
mode. All table values are read in
true form, but linear interpolation of
thc table during processing may require
either a log or linear scale, according
to JDUM:

=00 M linear, V linear
=01 M linear, V log
=10 M log, V linear
=11 M log, V log

Coefficients (formula coefficients only)

1-70 7E10.0 (COEF(I),I=1,7) - Thor formula coefficients,
group IS.

Fragment Mass Values (tables only)

NTB masses are read, 7 per card.

1-70 7E10.0 (XTB(I),I=l,7) - Fragment mass values, (grains)
for table IS.

Damage Threshold Velocity Values (tables only)

NTB velocities are read, 7 per card.
1-70 7El0.O (YTB(I),I=l-,7) - Damage threshold velocities

(fL/sec) for table IS.
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I Data cards read after a $OUTPUT,PARAMS statement. Between two and

four cards are read for each fragment field function.

I COLS. FORMAT NAME DESCRIPTION

I Heading Card

1 Ii IT Function type. If IT-0 and IS-0, the
end of this group of data cards has been
reached. If IT-O and IS>O, then the
function requires neither a table nor a
Thor formula, and the function type is
given by IS. IF IT.*O, then IT deter-
mines the function type.

=1 number of damaging fragments per
sq ft, using table IS.

=2 probability ot damage, using table IS.
=4 number of damaging fragments per sq ft

using coefficient set IS in the Thor
_ formula.

=5 probability of damage using coeffi-
cient set IS in the Thor formula.

2 Ii IS table number (if IT-I or 2), coefficient
group number (if IT 4 or 5), or function
type (if IT0):

I =1 total number of fragments per sq ft
=2 total fragment mass (lb) per sq ft
=3 total fragment momentum (lb-sec)

per sq ft
=4 total fragment kinetic energy (ft-lb)

per sq ft
=8 average fragment impact velocity (ft/sec)
"-9 average fragment impact angle (radians)

3 (ignored)

4 Al IVP Function variant code. A blank is treated
Sas a 'zero' character. IVP is used to dis-

tinguish plots of the same function, but
with different parameters.

5 (ignored)

6-10 15 NF Number of parameters (0CNF_14) If NF<14,
parameters not read are set to zero.
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COLS. FORMAT NAME DESCRIPTION

Title Cmrd

1-72 12A6 (ITTLF(I),I-l,12) - function title, which will
appear on all plots of this function.

Parameter Card(s)

NF parameters are read, 7 per card. If NF-O, no cards are read.

1-70 7E10.O (F(I),I-I,NF) - parameters affecting function
performance.

Parameters 1 through 7 have the same meaning for all functions:

F(1) miminum fragment weight (grams). All lighter frag-
ments are ignored.

F(2) minimum fragment velocity (ft/sec). All slower
fragments are ignored.

F(3) minimum fragment momentum (lb-sec). All fragments

whose momentum is too small are ignored.
F(4) minimum fragment kinetic energy (ft-lb). All frag-

ments whose kinetic energy is too small are ignored.

F(5) - F(7) (reserved)

Parameters 8 through 14 are used only if IT>O.
2F(8) target plan area (ft2)

F(9) average target elevation area (ft )

F(1O) - F(11) are used only if IT=4 or 5.

F(10) target thickness (in.)
F(11) target hardness, where applicable.

F(12) - F(14) (reserved)
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Data cards read after a $OUTPUTLIMITS statement. One card is read

for each function.

COLS. FORMAT NAME DESCRIPTION

1 I IT Function code (see PARAMS discussion
above)

2 12 IS subcode or table code (see PARAMS discus-
sion above)
Note that if IT=0 and IS=O the end of
this group of data cards has been reached.

3-10 (unused)

11-14 14 ISM Plot smoothing code. IF ISM=O, do no
smoothing. IF ISM=I to 5, smooth by re-
placing each value by the average of the
values in a 2*ISM+l raster square cen-
tered on that value.

15 Il ISC Plot scale code. ISC-O to request a
linear plot. ISC=l to request a plot of
the log of the function

16-20 (unused)

21-30 E10.0 OZMIN minimum value to be plotted.

31-40 E10.0 OZMAX maximum value to be plotted.

If OZMIN>OZMAX, the plot range is setinterna iTy.

I
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COLS. FORMAT NAME DESCRIPTION

Data card read after $OUTPUT,EXEC statement. See discussion of

the EXEC parameter for the list of valid function codes.

1-2 12 first function code

3-5 (ignored)

Subsequent function codes go in columns 6-7, 11-12, etc.

Data card read after $OUTPUr,SOJAC statement.

1-5 (ignored)

6-10 15 NZ number of function value ranges to be
plotted on printer. NZ4_50

11-19 (ignored, leave blank)

20-69 50Al (CH(I),I=I,NZ) - plot characters for each func-
tion value range.

Dita card read after $OUTPUT,RANGE statement.

1-5 (ignored)

6-10 15 NX number of resolution increments in X
direction (tail to nose). NX<81.

11-15 15 NY number of resolution increments in Y
direction (laterally from waist of muni-

tion). Normally NY=(NX-1)/2+I. NX<41.

16-20 (unused)

21-30 El0.0 XMIN minimum X value (ft)

31-40 E1O.O YMIN minimum Y value (ft). Normally YMIN=O.

41-50 EIO.0 DX X increment (ft). Normally NX,XMIN and DX
are set so that XMAX=-XMIN where XMAX
is XMIN+DX*(NX- ).

51-60 E1O.0 DY Y increment (ft). Normally NY and DY
are set so that YMAXA=XIVX where YMAX
is DY*(NY-l) if YMIN=O.
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"Sample Data Deck

the deck listed on the next page is set up to do the following

Job:

1) Read munition data for munition No. 4 (mod 1).
Gaps in the data are to be filled in, and the
data is to be listed neatly in tabular form.

2) A fragment field is to be computed, on a polar
grid consisting of 8 ranges spaced 250 feet
apart, and 18 azimuth rays, spread evenly over
a half-circle (at azimuths 5, 15, ... , 175 deg).
After the fragment field has been written onto
tape 4, an end of file is written and the tape
is rewound.

3) Output specifications are read. These include

a. the printer-plotter character set,

b. the size and resolution of the plot,

c. the trivial (0-velocity) fragment thresh-
old velocity table,

d. the function limits and scale (all are to
be plotted in log units), and

e. the function titles and parameters.

4) Plots are generated. The function specifica-
tions 01 and 30 cause functions 01, 10 and 20
to be generated and plotted.
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SPRINT CUNJTRQL,CATA
SORflNANCE, 1OR%1AY322,NQRMpSMOOTH,LjST
MUNITION 14 MOD 1

16 56 4-1 66U~.

(The munition data goes here.)

N~O A JRI3;N2 ?r00 FOOT 14ACIUSe 10 DEG AZ SECTORS
sT LVL -FM~1I-TL

ATAPE 4, J-4qf

q -12341)6769+

JOUjTP1r TAmIL5 LIST
102 0

11 oW~r16667 166687 dU.b. W
J"1 ,00016667 ,16667

21 1 ýi0oj

01 4
01~ A Pr S T O L iL!N S r~ E IS SPHERE OF UNIT CROSS-SECTION)

109
AP%.L .r1'~TY (RDI'F' \I FRACG';ENTS (KF, GT 58 FT-LB)

1.33 9.

PRCJPAPILITY OP b-l1T fly UAMAGNG FRAGMEtNT CK.F. GT 58 FT.LB)0., 0. 58.
1.33 9.

SOlU1PLT LXLC L!Sr 'AWI(PLOT
01 30

iSTC'P
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Sentinel Records

The munition data file (if one is used), the fragment field file,
and the output function file (if one is used) each consist of

several groups of data. Each group is preceded by a sentinel

record which identifies the group, as described in the following

section. In addition a special sentinel record is written after

the last data group.

A sentinel record exists in two forms, one for formatted files
(the BCD munition data file), and one for unformatted files (the
binary fragment field file and the binary output function file).

Formatted sentinel record:

char. 1-6 ' I*EAD*'
char. 7-14 an 8-character search key. (If fewer

than 8 characters, blanks are added.)

Search for a formatted data group using the statement:

$TAPE n,BCD,SRCH-key,BKSP

Unformatted sentinel record:

word l' '*READ*'

word 2 an 8-character search key. (If fewer
than 8 characters, blanks are added.)

Search for an unformatted data group using the statement:

$TAPE n,SRCH-key,BKSP

Two words are needed when using a computer with four characters
per word.

Two words are needed when using a computer with four or six
characters per word.
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Sentinel Record Keys

1. A 3-character key of the form
xxi

is used for munition data. (BM tape)

XX - munition ID number. 00_XX<99

I - a modification code. Normally I-0.

2. A 5-character key of the form

XXIJK

is used for fragment field tables. (Binary tape 4)

XXI as above

J,K - fragment field modification code to reflect
changes in resolution, target plane altitude,
barrier placement, etc.). Normally J-K0.

3. An 8-character key of the form

XXIJKYYL

is used for output function tables. (Binary tape 2)

XX,I,J,K as above

YY - output function code. (See $OUTPUT discussion.)

L - output function modification code(to reflect
changes in threshold or target parameters, etc.).
Normally L-0.

4. The sentinel record which should end a file has an 8-character

key which is
99999999

A sentinel record may be written with the statement

$TAPE n[, BCD],WEOF

A-22



rI
Timing

The generation of the fragment field is the most time consuming

"part of the program. Several parameters affect timing in this

phase.

NM number of mass categories into which munition
data is divided

NAZ number of azimuth angles

NEL number of elevation angles

DRNG range increment (ft)

All operations are performed for each mass category at each azi-

muth. Low-register fragment trajectories are computed for ranges

Ri=DRNG*i, out to RifRmax, which corresponds to an initial eleva-

tion angle of amax, High-register fragment trajectories are com-

puted for elevations ai(i-i/ 2 )ia, where _ct.90'/NEL, and where

a ma ai<90' °holds.

Thus the computation time for low register fragment trajectories

increases as DRNG decreases, and the computation time for high

register fragment trajectories increases as NEL increases. So

the expected computation time is given by

T-A*NM*NAZ* ( l+B/DRNG+C*.vNEL)

Because all runs done for this project used the same values of NAZ,

DRNG and NEL, the constants A, B and C cannot be determined at this

time. However, the approximate relation (in sec)

T=7 x NM

and has been observed on the Univac 1108, with NAX=I8, DRNG-250

and NEL-=8.
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